首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
For initiative application of non-oxides in refractories, it is essential to study thermodynamic properties of non-oxides. The stability and stable order of non-ox- ides under oxidized atmosphere are analyzed firstly and then a new process, “converse reaction sintering”, is proposed. The results of study on oxidation mechanism of silicon and aluminum nitrides indicate that the gaseous suboxides can be produced observably when the oxygen partial pressure is lower than “conversion oxygen partial pressure”. The suboxides can be deposited near the surface of composite to become a compact layer. This causes the material possessing a performance of “self-impedient oxidation”. Metal Si and Al are the better additives for increasing the density and width of compact layer and increasing the ability of anti-oxidation and anti-corrosion. The study on Si3 N4-Al2O3, Si3N4-MgO, Si3 N4-SiC systems is also enumerated as examples in the paper. The experimental results show that the converse reaction sintering is able to make high performance composites and metal Si and Al not only can promote the sintering but also increase the density and width of compact layer.  相似文献   

2.
ZrN-SiAlON composite materials were synthesized at 1 550 ℃ for 6 h via a carbothermal reduction nitridation route using fly ash (≤74 μm),zircon (≤ 44 μm) and active carbon as starting materials.The processed ZrN-SiAlON composite micropowders were mixed with polyvinyl alcohol as binder to prepare ZrN (ZrON)-SiAlON composite ceramics by carbon-embedded pressureless firing at 1 450,1 500 and 1 550 ℃ for 1 h,respectively.Influences of firing temperature on the phase compositions,microstructure and sintering properties of the ceramics were investigated.The results show that:(1) β-SiAlON based composite ceramics with different compositions can be prepared by controlling firing temperature,and the main crystalline phases of the specimen fired at 1 550 ℃ for 1 h involve ZrN,ZrON and β-SiAlON (z =2,Si4Al2O2N6); (2) ZrN (ZrON),β-SiAlON and a Fe-Si based compound can be observed in the microstructures of the specimens fired at different temperatures.ZrN (ZrON) particles distribute homogeneously in the β-SiAlON matrix; (3) raising firing temperature can increase the shrinkage ratio of the ceramics,and the volume shrinkage ratio increases from 19.4% to 40.3% when the firing temperature rises from 1 450 to 1 550 ℃.  相似文献   

3.
The present paper describes the synthesis of new com-postie anti-oxidants consisting of Al4SiC4 and aluminum-oxycarbides by heating a mixture of silica ,aluminum and carbonaceous substance at relatively low temperatures of 1500℃ in a flowing argon atmosphere.The phase compo-sition of the composite powder could be controlled through adjusting the fraction of raw materials in starting materi-als ,and also through controlling the sythesizing tempera-ture.In addition, the residual amount of Al4C3,Which was an intermediate phase in rection process,could be eliminated as much a5 possible.Therefore ,the hydration of the composite owders can be avoided.The addition of the synthesized composite anti-oxidants into carbon-bearing refractories can improve oxidation resistance greatly just like aluminum does but with non-hydration and breakage after oxidation.  相似文献   

4.
An O‘-Sialon-Al2O3 composite refractory was prepared by in situ reaction of Si3N4-ZrSiO4-Al2O3 mixture with fused alumina aggregates.Densification,in situreaction procedure and microstructure of the material were investigated by means of X-ray diffraction,optical and scanning electronic microscopes and EDAX.  相似文献   

5.
By using micron α-SisN4, SiO2, Al2O3 and h-BN as starting materials, O' -SiAION-BN ( Si2-z AlzO1 +z N2-z, z= 0. 3) composite was synthesized by reaction sintering. According to theoretical proportion ratio: n( SiO2)/n( α-Si3N4) = 1, the effects of two sintering aid composites, Y2O3 + B2O3 and Y2O3 + TiO2 at 1700℃ for 2h, were studied. The results indicate that Y2 O3 + TiO2 as sintering aid can accelerate reaction sintering of O' -SiAION-BN more effectively than Y2O3 + B2O3, and the relative density of the composites declined with the increase of BN addition (10%, 20% and 30% respectively); XRD analysis found that excessive β-Si3N4 existed in the O' -SiAION-BN composite. Therefore, in order to get more pure O' -SiAION and BN phases in the composites ore SiO2 is needed. When Y2O3 + TiO2 was used as sintering aid and addition of BN was 10%, the result of cross experiment on condition of A- n(SiO2)/n(α-Si3N4) was 1.05, 1.1 and 1.2; B-- addition of sintering aid was 2%, 4% and 6% ; C-- firing temperature was 1600℃, 1650℃ and 1700℃ ; D--soaking time was 1h, 2h and 3h, shows that the sintering properties were influenced by factors of firing temperature, soaking time, addition of sintering aid and n( SiO2 )/n(α-SisN4) in order of importance. In addition, the technical parameter A s B 3 C s D3 can achieve the highest relative density. Besides, using Pattern Recognition method, the optimized parameter range to form pure O' -SiAION and BN without β-Si3N4 remained was determined as Y 〉 1024X^2 - 230. 400X + 11.088 ( X = 0. 9999A -0. 0006C - 0. 0163D, Y = 0. 0163A + 0. 009B -0. 0014C +0. 9999D).  相似文献   

6.
ZrN- SiA lO N composite materials were synthesized at 1 550 ℃ for 6 h via a carbothermal reduction nitridation route using fly ash( ≤74 μm),zircon( ≤44 μm)and active carbon as starting materials. The processed ZrN- SiA lO N composite micropowders were mixed with polyvinyl alcohol as binder to prepare ZrN( ZrO N)-SiA lO N composite ceramics by carbon-embedded pressureless firing at 1 450,1 500 and 1 550 ℃ for 1 h,respectively. Influences of firing temperature on the phase compositions,microstructure and sintering properties of the ceramics were investigated. The results show that:( 1)β-SiA lO N based composite ceramics with different compositions can be prepared by controlling firing temperature,and the main crystalline phases of the specimen fired at1 550 ℃ for 1 h involve ZrN,ZrO N and β-SiA lO N( z =2,Si4Al2O2N6);( 2) ZrN( ZrO N),β-SiA lO N and a Fe- Si based compound can be observed in the microstructures of the specimens fired at different temperatures.ZrN( ZrO N) particles distribute homogeneously in theβ-SiA lO N matrix;( 3) raising firing temperature can increase the shrinkage ratio of the ceramics,and the volume shrinkage ratio increases from 19. 4% to 40. 3% when the firing temperature rises from 1 450 to 1 550 ℃.  相似文献   

7.
Si3N4ceramics were prepared by pressureless sintering at 1 650 ℃ in nitrogen atmosphere using Si3N4powder as main starting material and adding nanoAl2O3powder( 3%,6%,9%,12%,and 15% in mass,the same hereinafter). The bending strength and fracture toughness( KIC) of the specimens were detected.The microstructure and phase compositions of the specimens were analyzed. The results show that Si3N4ceramics can be prepared by pressureless sintering when adding9%- 12% nano-Al2O3as active reactant,which dissolves in Si3N4,in-situ forming non-oxide SiAlON. The obtained Si3N4ceramics have the maximum bending strength of 710. 86 MPa and KICof 8. 61 MPa·m1 /2.The excellent properties come from many interwoven structures distributed uniformly in the ceramics matrix,which is composed of big and firm plate-like β-Si3N4,hexagonal SiAlON and sheet Si2N2O.  相似文献   

8.
The magnesia based curable specimens with different Si3N4 contents were casted using sintered magnesite (w(MgO)=95%) as starting material, SiO2 micro-powder as binder, 0.3%, 4% and 5% β-Si3N4 powder replacing the equal addition of magnesia powder respectively. The slag resistance test was carried out at 1550℃ for 3h using Baosteel tundish slag and static crucible method. The result indicates that: introducing Si3N4 could obviously improve the slag resistance of MgO based castable, which increased with increasing Si3N4. Dense SiO2 sintered layer formed on the surface of magnesia based castable because of the oxidation of Si3N4 addition, which can prevent the further slag penetration. In the deep inner of castable, the partial-pressure of oxygen was very low, so Si3N4 can exist stably. Meanwhile in reducing atmosphere, Si3N4 was hard to be sintered, which resulted in the loose interior structure of MgO based castable.  相似文献   

9.
Al_2O_3-SiC-SiAlON composite specimens have been prepared using fused alumina,ultra fine α-Al_2O_3,Si and Al powders as starting materials and liquid phenol formaldehyde resin as binder and firing at 1 500 ℃ for3 h in carbon embedded condition. Thermo-mechanical properties of Cr_2O_3-Al_2O_3-Zr O2 composites have been studied. The results show:( 1) Cr_2O_3-Al_2O_3-Zr O2 composites can be prepared and sintered at 1 500 ℃ under carbon embedded condition. When Si / Al ratio is 8 /0and 7 /1, the prepared composite is Al_2O_3-SiC-O'-Si Al ON; when Si / Al ratio is 5/3 and 3 /5,the prepared composite is Al_2O_3- SiC-β-Si Al ON.( 2) The composites possess high temperature strength properties.Hot modulus of rupture at 1 400 ℃ is 10- 30 MPa.They are in elastic range up to 1 000 ℃,after which plastic deformation is observed; even at 1 400 ℃,amount of deformation is relatively low.( 3) The composites possess good thermal shock resistance,their residual strength ratio( ΔT = 1 100 ℃) is 65%- 80%.( 4) The marked improvement in thermo-mechanical properties of Cr_2O_3-Al_2O_3-Zr O2 composites may be attributed to the in-situ formation of Si C,Si Al ON and Al N,the fibrous Si C,columnar Si Al ON and tabular-like Al N fill in the corundum skeleton structure creating strengthening and toughening effects.  相似文献   

10.
以焦宝石、活性炭和铝粉为原料并添加Fe2O3后制备了Al4SiC4/Al4O4C复合耐火材料。利用化学分析、X射线衍射和扫描电镜研究了Fe2O3对所制备复合材料的物相组成和显微结构的影响。结果表明:在烧结过程中,从1400℃开始,Fe2O3转变为低熔点物相Fe3Si,产生液相促进Al4SiC4成核、细化晶粒,同时包裹Al4SiC4。此外,未添加Fe2O3的样品中生成的Al4O4C短纤维,Fe2O3的加入使得Al4O4C相变为细小的晶粒。
Abstract:
Al4SiC4/Al4O4C composite refractory was synthesized by using flint clay,activated carbon and aluminum powders as the raw materials and Fe2O3 as the additive. The effects of Fe2O3 on the phase composition and microstructure of Al4SiC4/Al4O4C composite refractory were investigated by chemical analysis,X-ray diffraction and scanning electron microscopy. The results show that Fe2O3 transforms into a low melting point phase of Fe3Si above 1 400 ℃,which leads to generate liquid phase and promote the nu-cleation and grain refinement of Al4SiC4 phase. Fe3Si also could coat Al4SiC4 grains. Moreover,the morphology of Al4O4C in Al4SiC4/Al4O4C composite refractory without addition of Fe2O3 is short fibrous-like structure,but changes into fine granules structure after adding Fe2O3.  相似文献   

11.
以Al2TiO5粉料、α-Si3N4粉料为原料,制备Al2TiO5-Si3N4复合材料。研究了Si3N4加入量、烧成气氛、烧成温度、保温时间对Al2TiO5-Si3N4复合材料性能的影响。研究结果表明,制备Al2TiO5-Si3N4复合材料较佳的工艺条件为Si3N4含量15%、氮化气氛、烧成温度为1550℃,保温时间为2h。  相似文献   

12.
以微米级Si3N4和h-BN粉末为原料,CaF2–Al2O3–Y2O3为烧结助剂,采用常压烧结工艺制备了BN体积含量为25%的Si3N4/BN复相陶瓷。研究了CaF2添加量对Si3N4/BN复相陶瓷材料力学性能的影响,并通过X射线衍射和场发射扫描电镜分析了复相陶瓷的物相组成和显微组织。结果表明:随着CaF2添加量增加,制备的Si3N4/BN复相陶瓷材料气孔率逐渐增大,收缩率变小,相对密度减小。添加量为2%(质量分数)时,Si3N4/BN复相陶瓷的室温抗弯强度达145.5MPa。添加适量的CaF2可在Si3N4/BN复相陶瓷材料常压烧结过程中较大程度地破坏h-BN的卡片房式结构,将微米级的h-BN颗粒变成纳米级颗粒。  相似文献   

13.
以Si3N4和Si粉为主要原料,Al2O3、Y2O3等为助剂,制备Si3N4料浆,用有机前驱体浸渍和二次烧成工艺来制备具有网络结构的多孔氮化硅陶瓷增强体.结果表明:二次烧成能显著提高材料性能,烧成温度在1600~1700℃为宜.用XRD、SEM、XEDS等对二次烧成材料的显微结构和晶相进行分析,研究二次烧成制度改善材料性能的原因,以利于更好的优化工艺.  相似文献   

14.
以SiC、Si粉和Al2O3微粉为主要原料,羧甲基纤维素(CMC)为临时结合剂,采用氮化反应烧结法合成了Si3N4-SiC材料,主要研究了Si粉的粒度(≤0.074、≤0.044 mm)和加入量(质量分数分别为15%、17%、19%、21%)、烧成温度(分别为1 380、1 400、1 420、1 430、1 440、1 460和1 480℃)、Al2O3微粉添加量(质量分数分别为0、1%、2%、3%、4%,取代相应量的SiC粉)对Si3N4-SiC材料的显气孔率、体积密度、常温耐压强度、常温抗折强度、高温抗折强度及Si3N4含量的影响。结果表明:1)采用粒度较细Si粉的试样具有较高的致密度、常温强度、高温抗折强度和Si3N4含量;随着Si粉加入量的增加,试样的致密度略有增大但变化不大,常温强度和Si3N4含量逐渐增大,而高温抗折强度先增大后减小;2)适当提高烧成温度会明显改善Si3N4-SiC材料的高温抗折强度,但当温度超过1 440℃反而略有下降;3)添加Al2O3微粉对烧后试样的致密度、常温强度和高温抗折强度有益。综合来看,Si粉的适宜添加量(质量分数)为17%,较适宜的烧成温度为1 420~1 440℃,Al2O3微粉的适宜添加质量分数为2%。  相似文献   

15.
氮化硅对烧成铝炭耐火材料的性能研究   总被引:1,自引:0,他引:1  
通过在铝炭耐火材料中引入氮化硅及很细的铝粉,在埋碳烧成过程中氮化硅与碳或与铝反应生成少量赛隆相及碳化硅。适当引入氮化硅,降低了铝炭砖的氧化失重率,提高了其抗脱磷剂侵蚀的能力及砖的抗氧化性能。  相似文献   

16.
以Si3N4和BN为原料,叔丁醇为溶剂,SiO2、Y2O3和Al2O3为烧结助剂,采用凝胶注模成型工艺制备具有高强度、低介电常数多孔Si3N4/BN复合陶瓷。研究了Y2O3和Al2O3含量对多孔陶瓷气孔率、孔径分布、物相组成、显微结构、抗弯强度和介电常数的影响。结果表明:通过调节Y2O3和Al2O3含量,多孔Si3N4/BN复合陶瓷的气孔率由55%增加到68%,气孔尺寸呈单峰分布,平均孔径为0.89~1.02μm;抗弯强度和相对介电常数随Y2O3和Al2O3含量的增加而单调增大,抗弯强度和相对介电常数的变化范围分别为29.9~60.9 MPa和2.30~2.85;通过调节Y2O3和Al2O3含量调控气孔率,能够获得介电性能和力学性能可调的高性能透波材料。  相似文献   

17.
《Ceramics International》2023,49(13):22022-22029
The in-situ controllable synthesis of AlN–SiC solid solution reinforcement in large-sized Al–Si3N4–Al2O3 composite refractory by two-steps nitriding sintering was examined. In the first step, a dynamic Al@AlN structure was constructed in the composite by pre-nitriding at 580 °C. During the subsequent sintering process, it cracked above ∼900 °C, and micronized Al cluster (mixture of droplets and vapor) was extracted out gradually. As a result, multiple AlN mesophases were formed through different reaction paths, including i) initial AlN shell formed by solid Al with N2, ii) reaction of Al cluster with N2, and iii) reaction of Al cluster with Si3N4 from 900 °C to 1500 °C. The Si3N4 precursor serves as both a solid nitrogen source and an active Si source, and the controllable reaction between Al and Si3N4 leading to uniformly distributed AlN and Si mesophases. AlN–SiC solid solution is significantly formed when liquid Si appears. The shell, granule and whisker SiC–AlN solid solution were observed mainly depending on the dynamic AlN mesophase. The SiC–AlN solid solution reinforced Al2O3 materials is a novel promising refractory for large-scale blast furnace lining.  相似文献   

18.
赵君红  王瑞生 《陶瓷》2011,(9):15-17
以金属硅粉、金属铝粉、轻烧氧化铝粉,添加Fe2O3、Si3Na4、广西粘土等烧结助剂,采用金属过渡相工艺制备Z=3的β—Sialon陶瓷材料。研究了球磨时间、si的含量、烧结温度对制备β-Sialon的影响。研究结果表明,延长球磨时间,提高烧结温度有助于β-Sialon粉体的生成,增加si粉含量对于纯化粉体作用不明显,合成β-SiMon的实际z值小于理论z值。  相似文献   

19.
β-Si3N4及添加β-Si3N4的α-Si3N4的气氛加压烧结   总被引:1,自引:0,他引:1  
介绍了β-Si3N4及添加β-Si3N4的α-Si3N4的气氛加压烧结,β-Si3N4在GPS中具有低于α-Si3N4的烧结活性而且陶瓷显微结构更容易调节,由GPSβ-Si3N4制备的陶瓷材料晶粒比较均匀,具有较高的力学性能,尤其是高的韦泊模数,添加于α-Si3N4中的β-Si3N4对陶瓷材料显微结构具有明显的调控作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号