首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用Gleeble-3500试验机对6061铝合金进行单道次等温恒应变速率压缩试验,研究合金在应变速率为0.001~1s~(-1),温度为350~500℃热变形条件下的动态再结晶行为。统计试验所得流变应力曲线峰值应力数据,确定合金热变形激活能Q为307.528kJ·mol~(-1),建立合金在不同热变形条件下的流变应力方程,动态再结晶峰值和临界应变模型;依据流变应力曲线特征,计算合金在不同变形条件下的动态再结晶体积分数,据此建立动态再结晶动力学模型。分析流变应力曲线可知铸态6061铝合金在350~500℃下变形,应变速率较低时(0.01s~(-1)),合金组织更容易发生动态再结晶,应力软化现象更明显。  相似文献   

2.
采用Gleeble-1500热模拟试验机对双态组织的Ti80合金在变形温度为860~980℃、应变速率为0.01~1 s~(-1)的变形条件下进行了等温热压缩实验,研究了合金的热变形行为,利用加工硬化率确定了不同变形条件下动态再结晶临界应变。结果表明,动态再结晶是Ti80合金热变形过程中的重要软化机制,并发现动态再结晶临界应变随温度的升高和应变速率的降低而减小。基于Z参数和改进后的Avrami方程,构建了Ti80合金动态再结晶临界应变与动力学模型。  相似文献   

3.
通过Gleeble-3500热压缩模拟试验机对6061铝合金进行热压缩实验,借助金相显微镜和透射电子显微镜研究合金在变形温度为340~490℃,应变速率为0.001~1 s~(-1)条件下热变形和动态再结晶行为。结果表明:6061铝合金的动态再结晶行为对变形温度和应变速率十分敏感,温度的升高和应变速率的减小都会促进动态再结晶的发生。基于峰值应力建立了合金热变形本构方程,计算得出热变形激活能为235.155 kJ·mol~(-1)。采用加工硬化率-流变应力曲线确定了合金热变形过程中的临界应力(应变)和峰值应力(应变)与Z参数的关系模型。随着温度的升高和应变速率的减小,DRX临界应力(应变)和峰值应力(应变)减小。依据Avrami方程建立了合金动态再结晶体积分数模型,动态再结晶体积分数随应变的增加,呈现先缓慢增加后迅速增加再缓慢增加的特征,所建模型能够较为准确地预测该合金的动态再结晶行为。  相似文献   

4.
采用Gleeble-1500热模拟试验机对3003铝合金进行变形温度为300~500℃,应变速率为0.01~10.0 s-1高温等温压缩实验,利用Zener-Hollomon参数模型建立了合金热变形峰值流变应力本构模型。结合显微组织观察分析,3003铝合金热变形软化机制主要是动态再结晶,随着ln Z值的减小,动态再结晶进行得越充分;ln Z值较大时,3003铝合金热变形过程中的软化机制主要以动态回复为主,据此获得合金发生动态再结晶的临界条件为T≥400℃,ln Z≤31.98。由应变硬化速率计算合金发生动态再结晶的临界应变为εεc=0.00532ln Z-0.12452,其大小与Z参数成正比关系。  相似文献   

5.
在300~400℃、0.003~1 s-1变形条件下,采用Gleeble-1500型热模拟试验机对Mg-8Al-1Zn-1Y镁合金进行热压缩实验。依据加工硬化率曲线拐点特征构建了合金热变形过程中的动态再结晶临界应变模型,并根据临界条件构建了合金的动态再结晶动力学模型,并分析了不同变形条件对合金动态再结晶的影响。结果表明:变形温度和应变速率对Mg-8Al-1Zn-1Y镁合金的热变形行为有显著的影响,其流变曲线表现出典型的动态再结晶特征,并且提高变形温度和降低应变速率都将促进动态再结晶的发生;在本实验条件下,Mg-8Al-1Zn-1Y镁合金的加工硬化率曲线均具有拐点特征,得到了合金在变形温度为300~400℃及应变速率为0.003~1 s-1条件下所对应的临界应变εc和峰值应变εp,并获得了合金临界应变模型和动态再结晶动力学模型,合金显微组织特征验证了所获得的临界应变模型和动态再结晶模型的准确性。  相似文献   

6.
采用热力模拟试验机对Al-0.83Mg-0.59Si铝合金进行热压缩实验,研究了变形温度300~500 ℃、变形速率0.001~10 s-1下材料的动态再结晶行为。实验得到Al 0.83Mg 0.59Si合金在300~500 ℃变形时,软化机制以动态再结晶为主;流变应力会随着变形温度的降低和变形速率的升高而升高,较低变形速率下,动态再结晶行为更充分,应力软化现象更明显。统计实验所得流变应力曲线数据,建立了热变形本构方程,确定了合金热变形激活能Q为480.243 kJ/mol 。基于加工硬化率曲线,建立了其动态再结晶临界应变模型。结果表明,Al-0.83Mg-0.59Si铝合金的流变应力随温度的升高和变形速率的降低而降低,动态再结晶是其主要的软化机制。临界应力与峰值应力存在线性关系:σc=0.85σp-5.061 58。引入Zener Hollomon参数来描述变形条件对临界条件的影响,得到临界应变与Z参数的关系为:εc=0.000 134Z0.051 64。  相似文献   

7.
采用Gleeble-1500热模拟试验机对3003铝合金进行变形温度为400℃,应变速率为0.01~10.0 s-1的等温压缩实验,获得热变形过程中的真应力-真应变曲线。结果表明:应变速率ε≥1.0 s-1时,实际变形温度高于预设温度,产生变形热效应。合金发生动态再结晶的临界应变随着应变速率的升高而增加,在较高应变速率条件下(ε≥1.0 s-1),流变应力曲线出现锯齿形波动,合金发生了不连续动态再结晶。利用光学显微镜和透射电镜分析了应变速率对3003铝合金热变形组织演变的影响。结果表明:应变速率越小,合金越容易发生动态再结晶,当应变速率为10.0 s-1时,由于变形热效应的作用,合金也发生了动态再结晶。低应变速率(ε≤0.1 s-1)条件下,提高应变速率可以明显细化晶粒,并且在相同应变下,动态再结晶体积分数随应变速率的增大而减小,综合考虑动态再结晶晶粒的大小和组织均匀性,较佳的应变速率为0.1 s-1。  相似文献   

8.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了变形条件对GH690合金高温变形动态再结晶的影响。结果表明:GH690合金动态再结晶过程是一个受变形温度和应变速率控制的过程,在应变速率为0.001~1s-1的实验条件下,GH690合金获得完全动态再结晶组织所需的温度随变形速率的增大而升高;动态再结晶晶粒尺寸随变形温度升高而增大。采用力学方法直接从流变曲线确定了GH690合金发生动态再结晶的临界应变量,并回归出临界应变量与Z参数的关系式:εc=1.135×10-3Z0.14233。GH690合金的主要动态再结晶机制是原始晶界凸起形核的不连续动态再结晶机制(DDRX),而新晶粒通过亚晶逐渐转动而形成的连续动态再结晶机制(CDRX)则起辅助作用。  相似文献   

9.
采用Gleeble-3800热模拟试验机,对Incoloy825高温合金在应变为0.92、温度为950~1150℃和应变速率为0.001~1 s-1条件下进行单道次压缩试验。依据真应力-真应变曲线建立了动态再结晶临界方程和动态再结晶动力学模型。结果表明,Incoloy825高温合金热变形对温度和应变速率较为敏感,真应力-真应变曲线整体满足硬化-软化-稳态的流变过程,动态再结晶是Incoloy 825高温合金材料的主要软化机制。在热变形过程中,动态再结晶临界应变随变形温度的升高和应变速率的降低呈减小趋势。对动态再结晶动力学模型进行分析发现,动态再结晶百分含量随变形温度的升高和应变速率的降低而增大,表明高变形温度和低应变速率对动态再结晶具有促进作用。  相似文献   

10.
通过Gleeble-3500热压缩模拟试验机对6061铝合金进行热压缩实验,借助金相显微镜和透射电子显微镜研究合金在变形温度为340℃?490℃,应变速率为0.001s-1?1s-1条件下热变形和动态再结晶行为。结果表明:合金的动态再结晶行为对变形温度和应变速率十分敏感,温度的升高和应变速率的减小都会促进动态再结晶的发生。基于峰值应力建立了合金热变形本构方程,计算得出热变形激活能为235.155kJ·mol-1。采用加工硬化率-流变应力曲线确定了合金热变形过程中的临界应力(应变)和峰值应力(应变)与Z参数的关系模型。随着温度的升高和应变速率的减小,DRX临界应力(应变)和峰值应力(应变)而减小。依据Avrami方程建立了合金动态再结晶体积分数模型,动态再结晶体积分数随应变的增加,呈现先缓慢增加后迅速增加再缓慢增加的特征,所建模型能够较为准确的预测该合金的动态再结晶行为。  相似文献   

11.
7085铝合金的热变形组织演变及动态再结晶模型   总被引:2,自引:0,他引:2  
通过等温压缩实验,系统研究热变形参数(变形温度、应变速率及应变量)对7085铝合金热变形组织演变的影响。结果表明:升高变形温度以及降低应变速率,均有利于7085铝合金的动态再结晶发生,导致变形后的7085铝合金位错密度降低,再结晶晶粒尺寸增大;随着应变量的增加,变形后的合金位错密度降低,动态再结晶体积分数增大。采用线性回归方法建立包括峰值应变方程、临界应变方程、动态再结晶动力学方程以及动态再结晶晶粒尺寸方程的7085铝合金动态再结晶模型。  相似文献   

12.
采用Thermecmaster-Z型热/力模拟试验机在变形温度为825~1125℃,应变速率为0.001~1 s~(-1)条件下对Ti-10V-2Al-3Fe合金进行热模拟压缩实验,分析了热变形参数对其流变行为的影响,并通过加工硬化率方法研究了该合金的动态再结晶临界条件。结果表明:合金的流变应力随变形温度的降低或应变速率的提高而增大;通过lnθ~ε曲线出现拐点及dlnθ/dε~ε曲线出现最小值判据,确定了该合金的动态再结晶临界应变;动态再结晶临界应变随应变速率的增大及变形温度的降低而增加;Z参数方程能较好地反映合金动态再结晶临界应变与热变形条件间的关系,动态再结晶临界应变与Z参数间的关系可表示为ε_c=2.6735×10~(-2)Z~(0.0817);临界应变与峰值应变之间存在线性关系,即ε_c=0.508ε_p。  相似文献   

13.
采用Gleeble-3500热模拟机对T4态AA6014铝合金板进行变形温度440~560℃、应变速率0.01~10 s~(-1)的热变形实验。研究了变形条件对AA6014铝合金显微组织的影响。结果表明:变形温度440、480℃的AA6014合金组织没有发生动态再结晶,组织中晶界模糊,有明显带状拉长晶粒,比原始组织粗大。变形温度520、560℃的AA6014合金动态再结晶组织明显,晶界清晰,晶粒基本为等轴状,560℃试样再结晶组织更为粗大,发生粗化。AA6014合金在变形温度520℃,随着应变速率的增大,再结晶晶粒越来越大,晶粒越来越不均匀;应变速率0.01 s~(-1)下动态再结晶晶粒细小均匀,效果最佳。  相似文献   

14.
利用Gleeble-1500热模拟试验机,研究了GH4169合金在变形温度为900~1100℃、应变速率为0.1 s-1、1 s-1、20 s-1、最大变形量高达70%条件下的高温变形行为,建立了GH4169合金的高温变形流动应力模型,分析了变形工艺参数对合金晶粒再结晶的影响规律。结果表明:随变形温度的降低和应变速率的增加,合金变形抗力显著增加;当变形量超过临界变形量时,随着变形量增加或变形温度的提高,合金的再结晶程度逐渐增加;然而,变形速率的变化,对该合金再结晶影响较为复杂。  相似文献   

15.
热轧过程中的动态再结晶影响锆合金板材的组织、织构演化以及最终力学性能。在本研究中,利用Gleeble 3800热模拟实验研究了Zr-1.0Sn-1.0Nb-0.1Fe合金在应变速率为0.01~10 s-1范围下,变形温度在550~700℃的动态再结晶行为。通过对实测应力-应变结果的加工硬化速率分析,确定了动态再结晶开始发生的临界应变和峰值应变。动态再结晶是通过塑性变形过程中流变应力的软化来判断的,并量化为计算的动态回复曲线和实测的应力-应变曲线之间的差异。采用计算的临界应变、峰值应变和动态再结晶体积分数对动态再结晶过程进行建模,最终利用EBSD统计所得的再结晶体积分数验证了Zr-1.0Sn-1.0Nb-0.1Fe合金的动态再结晶模型。  相似文献   

16.
明确7136铝合金的热变形和动态再结晶行为对于制定合理的加工工艺参数具有重要意义。试验亦分析了7136铝合金试样在变形温度为350℃~470℃、应变速率为0. 01 s-1~10 s-1条件下的热变形与动态再结晶行为,建立了合金的流变应力模型,并通过挤压试验和数值模拟验证了流变应力本构方程的合理性。结果表明,7136铝合金在350℃条件下进行热加工发生动态再结晶,再结晶百分数随温度升高而增加,随应变速率增加而减少:应变速率为0. 01 s-1、变形温度由375℃上升到450℃时,再结晶百分数由6. 8%逐渐增加至8. 2%;变形温度为400℃、应变速率由0. 01 s-1提高至10 s-1时,再结晶百分数由7. 6%逐渐减少至4. 9%。所获得的本构方程用于挤压过程的数值模拟,稳态阶段模拟与实际载荷位移曲线误差不超过5%。7136铝合金热挤压过程应选择较低的挤压温度和较高的挤压速度,以降低其动态再结晶百分数。  相似文献   

17.
为了模拟分析铝合金热变形过程中的微观组织演变过程,采用热物理模拟试验机对7050铝合金在变形温度分别为573、623、673和723 K和应变速率分别为0.01、0.1、1和10 s-1的条件下进行了热压缩试验.通过对试验数据进行处理,求解得到了7050铝合金的动态软化系数与加工硬化系数,并建立了改进后的Laasraoui-Jonas (L-J)临界位错密度模型,将该模型应用于合金热压缩变形过程的微观组织模拟,并与试验结果进行对比.结果 表明:采用修正的L-J位错密度模型可以计算7050铝合金动态再结晶过程中的位错密度;修正的L-J位错密度模型结合元胞自动机能比较精确地模拟7050铝合金的动态再结晶过程.  相似文献   

18.
采用单道次等温压缩实验获得了GH4742合金在变形温度为980~1100℃,应变速率为0.005~5s~(-1)条件下的应力-应变曲线。以实验数据为基础,运用KM模型、Poliak-Jonas准则、Avrami模型较为系统地描述了该合金动态再结晶过程的流变应力、临界应变量、组织演化动力学等特征。并在Prasad功率耗散率模型的基础上,将动态再结晶组织转变体积分数引入其中,获得了动态再结晶过程的能量变化规律,借助微观组织表征技术,揭示了该合金动态再结晶机理。研究结果表明:GH4742合金随着变形温度的升高和应变速率的降低,动态再结晶临界应变量减小,组织转变体积分数增加。发生完全动态再结晶时的功率耗散率大于0.44,形成机制为位错诱导的连续动态再结晶。  相似文献   

19.
利用Gleeble-1500热模拟试验机对均匀化7050铝合金在573~723℃和0.000 5~1s-1变形条件下进行热压缩试验。通过线性回归分析计算出均匀化7050铝合金的应变硬化指数以及变形激活能,获得了均匀化7050铝合金热压缩变形条件下的流变应力本构方程。并借助扫描电镜(SEM)、电子背散射衍射(EBSD)和透射电镜(TEM)显微分析,对不同热变形条件下合金的微观组织演变进行研究。结果表明,均匀化7050铝合金在高温压缩变形过程中有动态回复和动态再结晶现象。随着变形温度升高和应变速率下降,合金位错密度降低,流变应力减小。在热变形过程中,合金的主要软化机制由动态回复逐渐演变为动态再结晶,热变形组织由位错亚结构转变为再结晶组织。  相似文献   

20.
研究了退火和冷变形工艺对7075T73铝合金线材晶粒组织的影响,并探讨晶粒形貌对合金弯曲性能的影响:7075T73铝合金线材制备过程中,增加冷变形前退火工序,有效地提升合金的再结晶程度;增加冷变形量,也提高合金的再结晶程度和细化晶粒尺寸。采用退火+大冷拉拔变形工艺路线,有效地提高合金的再结晶分数和细化晶粒尺寸,提升7075T73铝合金线材的成形性能。7075T73铝合金线材的晶粒形貌对紧固件成形开裂的影响显著,完全再结晶晶粒形貌能有效提高合金的塑性变形能力、降低缺口敏感性,抑制成形过程中的裂纹开裂和扩展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号