首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spermatogenesis in Drosophila melanogaster serves as an excellent model system for the isolation and analysis of genes required in the control of chromosome segregation and cytokinesis. We report here the isolation and molecular characterization of a novel P-element induced allele of the des-1 gene, which leads to male sterility as a consequence of the failure of central spindle assembly in meiotic spermatocytes and the formation of aberrant meiotic end products characteristic of cytokinesis failure. We have raised affinity-purified antibodies against a Des-1 fusion protein, and localized the Des-1 protein in Drosophila spermatocytes. We show that the Des- protein is colocalized with mitochondria throughout male meiosis, becoming intimately associated with mitochondria along the spindle apparatus during anaphase and telophase, and with the Nebenkern, or mitochondrial derivative, of the meiotic end products. In addition, a significant association of Des-1 with the contractile ring is observed during anaphase and telophase of meiosis. These observations, together with the presence of six potential transmembrane domains in the Des-1 protein, raise the possibility that Des-1 may act as part of an anchoring mechanism that links membrane-bounded cellular compartments to components of the cytoskeleton.  相似文献   

2.
The polo gene of Drosophila melanogaster is the founding member of the polo-like kinase family which is conserved among eukaryotes. POLO has been implicated in the organisation and function of the mitotic apparatus. Furthermore, POLO has been shown to be required for normal spermatogenesis. To characterize further the role of POLO in spermatogenesis, polo mutants were analysed by immunostaining with specific antibodies and phase contrast microscopy. Immunofluorescence shows that POLO localises to the centrosomes, the centromere/kinetochore and the spindle midzone. The meiotic phenotype of various mutant allelic combinations was also studied in detail. Observation of mutant live testes indicates cytological abnormalities in all meiotic cell types, including variable DNA content and multipolar spindles. Primary spermatocytes in polo mutant testes contain an abnormal DNA content, suggesting failure of chromosome segregation during gonial division. Immunostaining of polo mutant cells with alpha-tubulin shows several abnormalities of the meiotic spindle, including a significantly reduced central spindle. Our results suggest that polo has multiple functions during spermatogenesis.  相似文献   

3.
We have used time-lapse laser scanning confocal microscopy to directly examine microtubule reorganization during meiotic spindle assembly in living Drosophila oocytes. These studies indicate that the bipolarity of the meiosis I spindle is not the result of a duplication and separation of centrosomal microtubule organizing centers (MTOCs). Instead, microtubules first associate with a tight chromatin mass, and then bundle to form a bipolar spindle that lacks asters. Analysis of mutant oocytes indicates that the Non-Claret Disjunctional (NCD) kinesin-like protein is required for normal spindle assembly kinetics and stabilization of the spindle during metaphase arrest. Immunolocalization analyses demonstrate that NCD is associated with spindle microtubules, and that the centrosomal components gamma-tubulin, CP-190, and CP-60 are not concentrated at the meiotic spindle poles. Based on these observations, we propose that microtubule bundling by the NCD kinesin-like protein promotes assembly of a stable bipolar spindle in the absence of typical MTOCs.  相似文献   

4.
Patients with the human disorder ataxia-telangiectasia (A-T; refs 1,2) and Atm-deficient mice have a pleiotropic phenotype that includes infertility. Here we demonstrate that male gametogenesis is severely disrupted in Atm-deficient mice in the earliest stages of meiotic prophase I, resulting in apoptotic degeneration. Atm is required for proper assembly of Rad51 onto the chromosomal axial elements during meiosis. In addition, p53, p21 and Bax are elevated in testes from Atm-deficient mice. To determine whether these elevated protein levels are important factors in the meiotic disruption of Atm-deficient mice, we analysed the meiotic phenotype of Atm/p53 or Atm/p21 double mutants. In these double mutants, meiosis progressed to later stages but was only partly rescued. Assembly of Rad51 foci on axial elements remained defective, and gametogenesis proceeded only to pachytene of prophase I. Previous results demonstrated that mice homozygous for a null mutation in Rad51 (ref. 6) display an early embryonic lethal phenotype that can be partly rescued by removing p53 and/or p21. Because Atm-deficient mice are viable but completely infertile, our studies suggest that the Rad51 assembly defects and elevated levels of p53, p21 and Bax represent tissue-specific responses to the absence of Atm.  相似文献   

5.
The mouse Nedd5 gene encodes a 41.5-kD GTPase similar to the Saccharomyces and Drosophila septins essential for cytokinesis. Nedd5 accumulates near the contractile ring from anaphase through telophase, and finally condenses into the midbody. Microinjection of anti-Nedd5 antibody interferes with cytokinesis, giving rise to binucleated cells. In interphase and postmitotic cells, Nedd5 localizes to fibrous or granular structures depending on the growth state of the cell. The Nedd5-containing fibers are disrupted by microinjection of GTPgammaS and by Nedd5 mutants lacking GTP-binding activity, implying that GTP hydrolysis is required for its assembly. The Nedd5-containing fibers also appear to physically contact actin bundles and focal adhesion complexes and are disrupted by cytochalasin D, C3 exoenzyme, and serum starvation, suggesting a functional interaction with the actin-based cytoskeletal systems in interphase cells.  相似文献   

6.
We report here the isolation and molecular characterization of the Drosophila homolog of the mitotic checkpoint control protein Bub3. The Drosophila Bub3 protein is associated with the centromere/kinetochore of chromosomes in larval neuroblasts whose spindle assembly checkpoints have been activated by incubation with the microtubule-depolymerizing agent colchicine. Drosophila Bub3 is also found at the kinetochore regions in mitotic larval neuroblasts and in meiotic primary and secondary spermatocytes, with the strong signal seen during prophase and prometaphase becoming increasingly weaker after the chromosomes have aligned at the metaphase plate. We further show that the localization of Bub3 to the kinetochore is disrupted by mutations in the gene encoding the Drosophila homolog of the spindle assembly checkpoint protein Bub1. Combined with recent findings showing that the kinetochore localization of Bub1 conversely depends upon Bub3, these results support the hypothesis that the spindle assembly checkpoint proteins exist as a multiprotein complex recruited as a unit to the kinetochore. In contrast, we demonstrate that the kinetochore constituents Zw10 and Rod are not needed for the binding of Bub3 to the kinetochore. This suggests that the kinetochore is assembled in at least two relatively independent pathways.  相似文献   

7.
BACKGROUND: An actomyosin-based contractile ring plays a pivotal role in cytokinesis. Despite the identification of many components of the ring, the steps involved in its assembly are unknown. The fission yeast Schizosaccharomyces pombe is an attractive organism in which to study cytokinesis because its cell cycle has been well characterized; it divides by medial fission using an actomyosin ring; and a number of S. pombe mutants defective in actomyosin ring assembly have been isolated. Here, we have characterized one such mutant, rng2. RESULTS: Temperature-sensitive rng2 mutants accumulated F-actin cables in the medial region of the cell but failed to organize the cables into a ring. In rng2-null mutants, only a spot-like structure containing F-actin was detected. The rng2+ gene encodes a protein related to human IQGAP1, a protein that binds actin and calmodulin and is a potential effector for the Rho family of GTPases. Rng2p localized to the actomyosin ring and to the spindle pole body (SPB) of interphase and mitotic cells. Localization of Rng2p to the actomyosin ring but not the SPB required F-actin. Rng2p interacted with calmodulin, a component of the SPB and the actomyosin ring. The rng2 gene showed genetic interactions with three other actomyosin ring assembly mutants, cdc4, cdc12, and rng5. CONCLUSIONS: The S. pombe IQGAP-related protein Rng2p is a component of the actomyosin ring and the SPB and is required for actomyosin ring construction following assembly of F-actin at the division site.  相似文献   

8.
The Drosophila boule gene is expressed exclusively in the male germline and encodes an RNA binding protein closely related to the mammalian fertility factors encoded by the DAZ (Deleted in Azoospermia) and DAZL (DAZ-like) genes. Mutation of boule blocks both meiotic divisions. Differentiation nonetheless continues, resulting in tetraploid spermatids that fail to mature into sperm. We have found that Boule localizes premeiotically to a perinucleolar region and then translocates to the cytoplasm at the onset of meiosis. We show that deletion of the Y chromosome ks-1 fertility locus eliminates Boule nuclear localization, although it does not perturb entry into meiosis. Based on these observations we propose that Boule acts in the cytoplasm to regulate the stability or translation of messenger RNA encoding an essential meiotic factor.  相似文献   

9.
We report functional analysis of gamma Tub37CD, a maternally synthesized gamma-tubulin that is highly expressed during oogenesis and utilized at centrosomes in precellular embryos. Two gamma Tub37CD mutants contained missense mutations that altered residues conserved in all gamma-tubulins and alpha- and/or beta-tubulins. A third gamma Tub37CD missense mutant identified a conserved motif unique to gamma-tubulins. A fourth gamma Tub37CD mutant contained a nonsense mutation and the corresponding premature stop codon generated a protein null allele. Immunofluorescence analysis of laid eggs and activated oocytes derived from the mutants revealed microtubules and meiotic spindles that were close to normal even in the absence of gamma Tub37CD. Eggs lacking the maternal gamma-tubulin were arrested in meiosis, indicative of a deficiency in activation. Analysis of meiosis with in vitro activation techniques showed that the cortical microtubule cytoskeleton of mature wild-type eggs was reorganized upon activation and expressed as transient assembly of cortical asters, and this cortical reorganization was altered in gamma Tub37CD mutants. In precellular embryos of partial loss of function mutants, spindles were frequently abnormal and cell cycle progression was inhibited. Thus, gamma Tub37CD functions differentially in female meiosis and in the early embryo; while involved in oocyte activation, it is apparently not required or plays a subtle role in formation of the female meiotic spindle which is acentriolar, but is essential for assembly of a discrete bipolar mitotic spindle which is directed by centrosomes organized about centrioles.  相似文献   

10.
To examine the effects of maternal ageing on the meiotic apparatus, we obtained oocytes from naturally cycling women in two age groups, including younger (aged 20-25 years) and older (aged 40-45 years) women. Using high-resolution confocal microscopy we obtained a detailed picture of the meiotic spindle and chromosome placement during various phases of meiosis. Our data revealed that the meiotic spindle in older women is frequently abnormal, both with regard to chromosome alignment and the microtubule matrix that comprise the meiotic spindle. The spindle in 79% of the oocytes from the older group exhibited abnormal tubulin placement and one or more chromosomes were displaced from the metaphase plate during the second meiotic division. In contrast, only 17% of the oocytes from the younger age group exhibited aneuploid conditions. The majority of eggs from this group possessed a well ordered, meiotic spindle containing chromosomes that were fully aligned within a distinct metaphase plate in the spindle. Chromosome management during meiosis is directed by microtubule assembly within the spindle. These data suggest that the regulatory mechanisms responsible for assembly of the meiotic spindle are significantly altered in older women, leading to the high prevalence of aneuploidy.  相似文献   

11.
In this work we have used the inhibitor of F-actin polymerisation cytochalasin B (Cyt B) to test the hypothesis that the contractile ring and the central spindle are mutually interdependent structures in mammalian mitotic cells. Double fluorescence staining of alpha-tubulin and F-actin was employed to analyse anaphase and telophase figures from asynchronously growing cultures and prometaphase-synchronised cells. Testing for the presence of the central spindle and contractile ring in human primary fibroblasts, human hepatoma cells and Chinese hamster cells after Cyt B treatment showed that both structures were simultaneously absent in over 60% of treated anaphases and 80% of telophases. Experiments on resumption of cytokinesis in cleavage-arrested cells further showed that Cyt B-treated human fibroblasts proceeded to cleavage within minutes after removal of the drug from the medium, concomitant with the re-formation of both cellular structures in cleaving cells. These data suggest that the presence of a correctly assembled contractile ring is essential for the formation and persistence of the central spindle during ana-telophase and provide further support for the idea of a strong co-operative interaction between these two structures during cytokinesis.  相似文献   

12.
DMC1 is a meiosis-specific gene first discovered in yeast that encodes a protein with homology to RecA and may be component of recombination nodules. Yeast dmc1 mutants are defective in crossing over and synaptonemal complex (SC) formation, and arrest in late prophase of meiosis I. We have generated a null mutation in the Dmc1 gene in mice and show that homozygous mutant males and females are sterile with arrest of gametogenesis in the first meiotic prophase. Chromosomes in mutant spermatocytes fail to synapse, despite the formation of axial elements that are the precursor to the SC. The strong similarity of phenotypes in Dmc1-deficient mice and yeast suggests that meiotic mechanisms have been highly conserved through evolution.  相似文献   

13.
A number of lines of evidence point to a predominance of cytokinesis defects in spermatogenesis in hypomorphic alleles of the Drosophila polo gene. In the pre-meiotic mitoses, cytokinesis defects result in cysts of primary spermatocytes with reduced numbers of cells that can contain multiple centrosomes. These are connected by a correspondingly reduced number of ring canals, structures formed by the stabilization of the cleavage furrow. The earliest defects during the meiotic divisions are a failure to form the correct mid-zone and mid-body structures at telophase. This is accompanied by a failure to correctly localize the Pavarotti kinesin- like protein that functions in cytokinesis, and of the septin Peanut and of actin to be incorporated into a contractile ring. In spite of these defects, cyclin B is degraded and the cells exit M phase. The resulting spermatids are frequently binuclear or tetranuclear, in which case they develop either two or four axonemes, respectively. A significant proportion of spermatids in which cytokinesis has failed may also show the segregation defects previously ascribed to polo1 mutants. We discuss these findings in respect to conserved functions for the Polo-like kinases in regulating progression through M phase, including the earliest events of cytokinesis.  相似文献   

14.
The synaptonemal complex (SC) is a proteinaceous structure formed between pairs of homologous chromosomes during prophase I of meiosis. The proper assembly of axial elements (AEs), lateral components of the SC, during meiosis in the yeast, Saccharomyces cerevisiae, is essential for wild-type levels of recombination and for the accurate segregation of chromosomes at the first meiotic division. Genetic experiments have indicated that the stoichiometry between two meiosis-specific components of AEs in S. cerevisiae, HOP1 and RED1, is critical for proper assembly and function of the SC. A third meiosis-specific gene, MEK1, which encodes a putative serine/threonine protein kinase, is also important for proper AE function, suggesting that AE formation is regulated by phosphorylation. In this paper, we demonstrate that Mek1p is a functional kinase in vitro and that catalytic activity is an essential part of the meiotic function of Mek1 in vivo. Immunoblot analysis revealed that Red1p is a MEK1-dependent phosphoprotein. Co-immunoprecipitation experiments demonstrated that the interaction between Hop1p and Red1p is enhanced by the presence of MEK1. Thus, MEK1-dependent phosphorylation of Red1p facilitates the formation of Hop1p/Red1p hetero-oligomers, thereby enabling the formation of functional AEs.  相似文献   

15.
Mice that are deficient in either the Pms2 or Msh2 DNA mismatch repair genes have microsatellite instability and a predisposition to tumours. Interestingly, Pms2-deficient males display sterility associated with abnormal chromosome pairing in meiosis. Here mice deficient in another mismatch repair gene, Mlh1, possess not only microsatellite instability but are also infertile (both males and females). Mlh1-deficient spermatocytes exhibit high levels of prematurely separated chromosomes and arrest in first division meiosis. We also show that Mlh1 appears to localize to sites of crossing over on meiotic chromosomes. Together these findings suggest that Mlh1 is involved in DNA mismatch repair and meiotic crossing over.  相似文献   

16.
The alignment of homologous chromosomes during meiosis is essential for their recombination and segregation. Telomeres form and protect the ends of eukaryotic linear chromosomes, and are composed of tandem repeats of a simple DNA sequence and the proteins that bind to these repeats. A role for telomeres in meiosis was suspected from observations of telomere clustering in meiotic cells, and has now been supported experimentally by the dramatic rearrangement of telomere locations during premeiotic stages in fission yeast. Here we show that the fission yeast telomere protein, Taz1, is required for stable association between telomeres and spindle pole bodies during meiotic prophase. In the absence of Taz1, telomere clustering at the spindle pole bodies is disrupted, meiotic recombination is reduced, and both spore viability and the ability of zygotes to re-enter mitosis are impaired to a level that would be expected if chromosome segregation were occurring randomly. Such telomeric association mediated by telomere-specific proteins may also be important for proper chromosome alignment and recombination during meiosis in humans.  相似文献   

17.
The Drosophila mei-S332 and ord gene products are essential for proper sister-chromatid cohesion during meiosis in both males and females. We have constructed flies that contain null mutations for both genes. Double-mutant flies are viable and fertile. Therefore, the lack of an essential role for either gene in mitotic cohesion cannot be explained by compensatory activity of the two proteins during mitotic divisions. Analysis of sex chromosome segregation in the double mutant indicates that ord is epistatic to mei-S332. We demonstrate that ord is not required for MEI-S332 protein to localize to meiotic centromeres. Although overexpression of either protein in a wild-type background does not interfere with normal meiotic chromosome segregation, extra ORD+ protein in mei-S332 mutant males enhances nondisjunction at meiosis II. Our results suggest that a balance between the activity of mei-S332 and ord is required for proper regulation of meiotic cohesion and demonstrate that additional proteins must be functioning to ensure mitotic sister-chromatid cohesion.  相似文献   

18.
The ord gene is required for proper segregation of all chromosomes in both male and female Drosophila meiosis. Here we describe the isolation of a null ord allele and examine the consequences of ablating ord function. Cytologically, meiotic sister-chromatid cohesion is severely disrupted in flies lacking ORD protein. Moreover, the frequency of missegregation in genetic tests is consistent with random segregation of chromosomes through both meiotic divisions, suggesting that sister cohesion may be completely abolished. However, only a slight decrease in viability is observed for ord null flies, indicating that ORD function is not essential for cohesion during somatic mitosis. In addition, we do not observe perturbation of germ-line mitotic divisions in flies lacking ORD activity. Our analysis of weaker ord alleles suggests that ORD is required for proper centromeric cohesion after arm cohesion is released at the metaphase I/anaphase I transition. Finally, although meiotic cohesion is abolished in the ord null fly, chromosome loss is not appreciable. Therefore, ORD activity appears to promote centromeric cohesion during meiosis II but is not essential for kinetochore function during anaphase.  相似文献   

19.
LYT1 is an essential gene for the growth and morphogenesis of Saccharomyces cerevisiae. A detailed characterization of mutants carrying the lyt1-1 allele showed that this mutation was recessive and pleiotropic, affecting both mitotic and meiotic functions. At the nonpermissive temperature of 37 degrees C, lyt1 haploid strains budded at a distal position (instead of an axial one, as in wild-type haploid strains) and underwent autolysis when the buds were almost the size of the mother cells. These mitotic alterations in cell stability and budding topology were dependent on growth and protein synthesis. Autolysis was prevented by inhibiting DNA synthesis (with hydroxyurea) or by blocking the assembly of microtubules (with benomyl), suggesting that loss of cell viability must occur at a fixed mitotic cycle stage after DNA synthesis and mitotic spindle assembly. On the other hand, lyt1-1/lyt1-1 diploids failed to sporulate at both 24 and 37 degrees C. Taking into account these characteristics, the lyt1 mutant could be considered a cdc-like mutant. By genetic transformation of an appropriate lyt1 strain with a genomic library, ligated to the multicopy vector YEp13, we isolated a gene capable of complementing mitotic alterations but not the meiotic defect. This was the sporulation-specific gene SPO12, which is expressed under the control of the locus MAT in meiosis and is also expressed in the mitotic cycle (V. Parkes and L. H. Johnston, Nucleic Acids Res. 20:5617-5623, 1992). A significant level of SPO12 mRNA can be detected when this gene is inserted in a multicopy plasmid.  相似文献   

20.
The Drosophila anachronism (ana) locus controls the proliferation of neuroblasts, neuronal stem cells that give rise to the central nervous system. In ana mutants, quiescent postembryonic central brain and optic lobe neuroblasts enter S phase precociously. ana encodes a novel secreted protein of 474 amino acids that is expressed not in the affected neuroblasts, but rather in a subclass of neighboring glial cells. These studies argue for an important role for glia in negatively regulating proliferation of neuronal precursor cells, thereby controlling the timing of postembryonic neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号