首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel fiber sensor composed by two single mode fibers and long period fiber grating based on a photonic crystal fiber prepared by periodic discharge heating has been experimentally investigated to measure refractive index and temperature. A Mach-Zehnder interferometer was formed due to the presence of two fusion spliced collapsed regions in the photonic crystal fiber. The resonance dip and interference pattern were differently influenced by the ambient disturbance, so the dual-parameters were simultaneously measured by analyzing the characteristics of transmission spectrum. After the experimental measurements, refractive index and temperature sensitivities of 117.28?nm/RIU and ?86.29?pm/°C were realized. Therefore, the reported sensor with advantages of easy fabrication, simple structure, and small size has the potential for simultaneous refractive index and temperature measurements involving biochemical sensing applications.  相似文献   

2.
Mn0.75Zn0.25Fe2O4 nanoparticles were used to characterize magnetic fields using an all-fiber Fabry–Perot interferometer. The 20-nm nanoparticles were fabricated with citrate and displayed a coercive field of approximately 10?mT. The nanoparticles were dispersed in oleic acid to prepare a magnetic fluid to fill a Fabry–Perot structure fabricated by arc splicing with conventional single-mode and hollow core photonic crystal fibers. This device provided sensitivity and resolution of 0.11?dB/mT and 0.09?mT, respectively. Thermal analysis indicated that the magnetic measurements are weakly depending on temperature (0.7?pm/°C and 7?×?10?3?dB/°C). This device offers low-cost fabrication, simple implementation and may be used in several industrial applications.  相似文献   

3.
Optical fiber Fabry-Perot interferometers have been widely used as sensors. A novel anhydrous ethanol-filled optical fiber Fabry-Perot temperature sensor was reported in this article. Based on the characteristics of the temperature-controlling refractive index, the ethanol may serve as a sensitive medium for a sensor. According to the experimental results, the refractive index of the ethanol was changed by approximately 0.02617 when the temperature increased from 16°C to 74°C. A cavity length of 94 μm was used to demonstrate the feasibility of this sensor. The resonance wavelength of the sensor shifted about ?0.42 nm/°C. The novel optical fiber Fabry-Perot temperature sensor was simple, compact, sensitive, and immune to electromagnetic interferences.  相似文献   

4.
基于相位压缩原理的一种新型微分干涉仪   总被引:2,自引:0,他引:2  
刘彬  张秋婵 《仪器仪表学报》2001,22(2):179-180,185
本文提出一种先进的微分式光纤干涉仪,充分利用了马赫-曾特尔光纤干涉仪和萨格纳克光纤干涉仪的共同优点,采用相位压缩原理,解决了普通双光束干涉仪线性范围窄的问题,对光纤双折射以及温度、振动等外界环境的干扰,有较好的抑制作用。  相似文献   

5.
为了实现高灵敏度的温度传感,通过在基于保偏光纤Sagnac干涉仪的Sagnac环内增加一段保偏光纤,控制两段保偏光纤快轴熔接角度接近45°,设计并制造了保偏光纤转轴熔接Sagnac干涉环结构。在理论上通过Jones矩阵推导了保偏光纤转轴熔接Sagnac干涉环的干涉谱公式,基于仿真分析研究了主要参数对保偏光纤转轴熔接Sagnac干涉环输出特性的影响。仿真结果表明,保偏光纤转轴熔接Sagnac干涉环实现了光学游标效应,两段保偏光纤的平均长度、两段保偏光纤的长度差分别影响保偏光纤转轴熔接Sagnac干涉环输出干涉谱的波长间隔和包络周期;在实验中,将保偏光纤转轴熔接Sagnac干涉环应用在光纤温度传感器中。实验结果表明,在2cm的感温区域,保偏光纤转轴熔接Sagnac干涉环温度传感器的灵敏度就达到了-2.44nm/℃,是普通Sagnac干涉环温度传感器(-0.163nm/℃)的14.97倍。  相似文献   

6.
In this paper, a sensitive-enhanced single-mode fiber—tapered hollow core fiber—single-mode fiber Mach–Zehnder interferometer is demonstrated for refractive index sensing. The sensitivity was improved by forming an up-taper at the two splicing joints and concave cone in hollow core fiber. The up-tapered regions served as a more effective mode splitter/combiner, and the tapered hollow core fiber was used to generate a stronger evanescent field to enhance the interaction of light with the analyte. According to the principles of interference between the cladding and fundamental modes, we performed refractive index measurements. The experiments indicated that the proposed sensor has a high refractive index sensitivity of 214.97?nm/RIU in the refractive index range of 1.333–1.379, with a minimum refractive index measurement resolution of 9.3?×?10?5. In addition, the sensor had a low temperature response of 2.96?pm/°C in the range from 50 to 85°C and a low cross sensitivity of 1.377?×?10?5 RIU/°C. The proposed sensor is attractive for its high refractive index sensitivity, easy fabrication, low cross sensitivity, and good mechanical strength, making it of potential value for refractive index measurements for chemical and biological sensing.  相似文献   

7.
A novel torsion sensor employing a short length of polarization maintaining photonic crystal fiber was inserted into the fiber loop mirror with an output probe. The sensing scheme was described theoretically by a Jones matrix and experimentally demonstrated. The results showed that the sensitivity of the intensity loss in response to the twist angle may be up to 0.0394 dB/° and a resolution of 0.025° was achieved. This torsion sensor is attractive due to its compact size, insensitivity to temperature, and suitability for longer distance transmission than conventional sensors.  相似文献   

8.
□ A novel simultaneous method of strain and temperature measurement based on a polarization maintaining fiber Bragg grating loop mirror is proposed and demonstrated. The sensing head was composed of a fiber loop mirror and a section of fiber Bragg grating made of a polarization maintaining fiber. The Bragg wavelengths of the fiber grating in the polarization maintaining fiber were along slow and fast axis showing different sensitivities to strain and temperature with the interferometric peak wavelength of the fiber loop mirror. By monitoring the shifts of the Bragg wavelength and interferometric peak of the fiber loop mirror, with its temperature sensitivity of 0.1167 nm/°C and strain sensitivity of 0.0093 nm/μ?, a temperature measurement resolution about 0.009°C and a strain measurement resolution of 1.08 μ? was achieved theoretically and experimentally.  相似文献   

9.
A long-period fiber grating sensor was fabricated by periodically changing the structure of single-mode fiber with an electric arc discharge technique. After the fabrication, the refractive index and temperature sensitivities were optimized by etching the cladding with hydrofluoric acid solution. The experimental results illustrate that the thinner cladding shows relatively higher refractive index and temperature sensitivities for the same order cladding mode, which are accordant with that of numerical simulation. After the long-period fiber grating was etched for 15?min, average refractive index sensitivities of 214?nm/refractive index unit (RIU) (1.3333?–?1.3931) and 1987?nm/RIU (1.4115–1.4555) were achieved. An extremely higher refractive index sensitivity of 2731?nm/RIU appears near 1.4555. By systematically studying the temperature sensing characteristic of cladding-etched long-period fiber grating in this work for the first time, the temperature sensitivity can reach as high as 144.23?pm/°C when the ambient temperature changes from 30 to 80°C. This work provides a theoretical reference for the fabrication of a high-sensitivity refractive index and temperature sensor based on arc-induced long-period fiber grating.  相似文献   

10.
A fiber optic temperature sensor is reported based on the interference between the orbital angular momentum and Gaussian beams. A Mach-Zehnder interferometer was employed to convert the temperature signal to a light signal of the phase difference between the reference and measuring paths. The fiber Bragg grating is included in the fiber of the measuring path. Different from the traditional sensing of fiber Bragg gratings by wavelength interrogation, the temperature-dependent phase delay near Bragg wavelength was utilized in this design. The resolution of system was better than 0.01°C. Moreover, the sensitivity of the system was obtained across various ranges of temperature. This system has potential applications in temperature measurements that require high resolution.  相似文献   

11.
A high sensitivity method is reported for the measurement of the internal refractive index using a photonic crystal fiber long period grating. Long period gratings of different lengths were inscribed in photonic crystal fibers, and the air holes of the fiber had varying refractive indices. A side lobe appeared near the resonant dip through the analysis of the characteristics of transmission spectra showing variation in the refractive index. The resonant dip and its side lobe provided varying sensitivities to the internal refractive index values. The sensitivity of the side lobe was as high as 2343?nm/refractive index unit (RIU), which exceeded the value for the resonant dip (2047?nm/RIU) for refractive indices from 1.3333–1.3792. Due to the high resolution of 8.5?×?10?6 RIU, this method offers promising applications for biological and chemical analysis in which high-precision refractive index measurements are required.  相似文献   

12.
The pore water pressure sensors with the six-hole suspended-core polarization-maintaining photonic crystal fiber (SC-PM-PCF) and commercial polarization-maintaining photonic crystal fiber (PM-PCF) are designed based Sagnac interferometer and calibrated in the laboratory. According to the theoretical analysis and calibration results, the transmission spectrum is very sensitive to the pore water pressure. It is found that the wavelength of the spectrum has a good linear relationship with variances of the surrounding pore water pressure, and the coefficient of wavelength–pressure of the commercial PM-PCF is 304.41 kPa/nm with the length of 35 cm as the sensing element while the coefficient of the SC-PM-PCF is 254.75 kPa/nm with the length of 100 cm. Finally, the two PM-PCF sensors are applied and compared with the conventional Pore water Pressure Transducers (PPTs) in a physical model test. It is found that measurements of the PM-PCF sensors are in good agreement with the results measured by the conventional PPTs.  相似文献   

13.
An optical fiber sensor based on a multimode tapered fiber cascading fiber Bragg grating has been proposed and experimentally demonstrated for the simultaneous measurement of humidity and temperature. The sensor was constructed using a tapered fiber that was coated with polyvinyl alcohol and a fiber Bragg grating with high reflectivity. The measurement of humidity and temperature was achieved by monitoring changes in reflective optical power and spectral shift, respectively. Due to the different measurement methods, the effect of temperature on humidity measurement may be ignored. The theoretical analysis and experimental results show that the highest sensitivities of 0.33 µW/%RH and 10.9?pm/°C were achieved when the diameter of the taper waist was 26?µm and the thickness of coating was 3.3?µm. Due to the advantages of good linearity, low cost of fabrication and convenient operation, the proposed sensor is promising for simultaneously measuring humidity and temperature.  相似文献   

14.
A novel fiber optic sensor for the simultaneous measurement of refractive index and temperature is reported. The sensor consists of a high-birefringence fiber loop mirror and a section of single mode-coreless-single mode fiber structure. The single mode-coreless-single mode fiber structure served as a refractometer while the high-birefringence fiber loop mirror was used to measure temperature. The multimode interference valley of the single mode-coreless-single mode fiber structure was sensitive to the surrounding refractive index of liquids (96.42 nm/refractive index unit) and had almost no response to temperature fluctuations. The high-birefringence fiber loop mirror was highly sensitive to temperature (1.98 nm/°C) but was insensitive to changes in refractive index. The theoretical and experimental results demonstrated simultaneous measurement of temperature and refractive index. The optimum resolution was 2.07 × 10?4 refractive index units and 0.01°C.  相似文献   

15.
卞庞  吴媛  贾波  肖倩 《光学仪器》2014,36(4):300-304,310
针对传统的电网局部放电定位方法的诸多缺点,提出了一种基于Sagnac干涉仪的光纤传感定位系统。该定位系统使用光纤作为传感单元,探测局部放电过程中所产生的声波和超声波,利用算法对探测到的振动信号进行处理,最终得到局部放电发生的具体位置。实验证明该系统具有较高的精确性和稳定性。  相似文献   

16.
高非线性光子晶体光纤中布拉格光栅的制作   总被引:1,自引:7,他引:1  
采用相位掩模版法实验研究了高非线性掺锗光子晶体光纤中布拉格光栅的制作。实验中采用的光子晶体光纤的非线性系数约为12 W-1km-1,模场直径约为2.4 mm。 分析了布拉格光栅的反射率随着曝光脉冲数的变化,随着曝光脉冲数的增加其反射率逐渐达到饱和,继续增加曝光量发射率开始下降。实验验证了可以在高非线性光子晶体中写入布拉格光栅,得到光栅的反射率为44.4%,这对于研究光纤布拉格光栅的非线性效应和应用具有重要意义。讨论了影响布拉格光栅写入效率的因素。  相似文献   

17.
A 1.8-µm tunable multiwavelength thulium-doped fiber laser based on a hybrid filter is proposed. In the designed ring-cavity fiber laser, the filter consists of one Sagnac loop and one dual-pass Mach–Zehnder filter. In the experiment, the lasing threshold is 155?mW, and a continuously tunable and stable single-wavelength laser could be realized with a minimum tuning interval of 2.1?nm within a scope of 22.5?nm. When an 1858-nm laser is obtained, the peak power fluctuation is less than 0.83?dB within 20 minutes at room temperature. By adjusting the polarization controller, stable dual-wavelength lasers are simultaneously achieved, and the peak power shift is less than 1.24?dB within a scan time of 20 minutes at room temperature. By changing the polarization state, stable triple-wavelength lasing is obtained, and the power fluctuation is less than 1.95?nm. In the experiment, the 3-dB linewidth of the laser is less than 0.4?nm.  相似文献   

18.
一种新型的高压电器温度在线测量系统   总被引:1,自引:0,他引:1  
钱祥忠 《仪器仪表学报》2012,33(6):1359-1363
基于螺旋形液晶填充光子晶体光纤的温度传感特性,提出一种新型的高压电器温度传感器系统。该传感器系统由宽带光源、螺旋形液晶、光子晶体光纤、光纤F-P腔(Fabry-Perot cavity)滤波器、信号处理放大电路等组成。将螺旋形液晶封装在光子晶体光纤的纤芯空气孔中,利用光子晶体光纤对温度和弯曲不敏感特性以及螺旋形液晶的螺距对温度变化非常敏感的特性,传感器的选择反射光波长依赖于温度的变化,采用光纤F-P腔滤波器解调出光波长的变化,利用反射波长与温度之间的关系,实现温度的测量。测量系统选用合适液晶,可以得到不同的温度测量范围,能对高压电器温度进行在线检测,测量精度可以达到±0.1℃以内,并具有本征安全、高精度、高电绝缘和抗电磁干扰、对应变和环境光变化不敏感以及与普通传输光纤兼容性好等优点。  相似文献   

19.
Changes in the transparency of lead tungstate crystals under continuous ~1200-h irradiation with γ rays of a radionuclide 60Co source were investigated. The crystal temperature was maintained at a level of ?15°C at a dose rate of 0.1 Gy/h. The crystal transparency recovery process was investigated after the irradiation at temperatures varying from ?15 to +38°C. The study was performed while preparing for the PANDA experiment in the FAIR project in Germany.  相似文献   

20.
Infrared gas sensors employing hollow-core photonic crystal fibers are reported. A hollow-core photonic crystal fiber in the gas cell of the sensor was inserted between a single mode fiber and a multi-mode fiber in the light path. The gaps between the facets of hollow-core photonic crystal fiber and single mode fiber were optimized to increase the coupling efficiency. The gas chambers were modified to reduce the time for filling. Broadband and laser sources were employed to determine acetylene at concentrations between 0% and 0.6%. The resolution was 0.084 ppm and the stability was 0.556%. These sensors have promising applications for trace gas measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号