首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heat flows out from the tokamak core region are collected on the divertor plates and external wall. Control of heat flux exhaust in the SOL and divertor plates regions is one of the important issues in tokamak physics. There are important phenomena affecting heat flows were simulated. The simulation is based on the B2SOLPS5.0 2D multifluid code. It is demonstrated that, the following results: (1) The simulation shows that, the operation of small size divertor tokamak, the divertor plate with/without impurities influence on profiles of electron, ion temperatures, and heat loads significantly. (2) Under normal direction of parallel (toroidal) magnetic field and different values of edge plasma density, strong “SOL” heat flow exists directed towards the LFS (outer) plate. (3) The simulation results show that, the increasing of the plasma density strong influence on the ion and electron poloidal heat fluxes profile significantly. The ion and electron polodial heat flux increase by factor “~8” and “2.4” times. (4) The simulation results show that the in–out asymmetry of heat fluxes was reversed when switching on/off E × B drifts in the edge plasma of this tokamak. (5) The simulation results show correlation between the in–out asymmetry divertor heat fluxes and E × B drift velocity. (6) The observed heat loads asymmetry between HFS and LFS plates can be explained with the radial electric field in SOL. (7) Also the simulation results performed result in, the in–out asymmetry strong influence on the characteristic length of ion poloidal heat flux.  相似文献   

2.
The effect of toroidal rotation on heat flux transport in the edge plasma of small size divertor was simulated by B2SOLP0.5.2D transport code. The main results of simulation shows that, the following: (1) the radial heat flux is strongly influenced by toroidal rotation. (2) The amplification of conduction part of radial heat flux imposes nonresilient profile of ion temperature, under which the effect of toroidal rotation on ion temperature profile is strong. (3) The ion distribution and its gradients are lower for counter-injection neutral beam than for co-injection neutral beam. (4) Reversal of toroidal rotation during using neutral beam injection result in reverses of radial electric field and E × B drift velocity. (5) The toroidal rotation strong influence on the ion temperature scale length of the ion temperature gradient (ITG). (6) Switch on and off all drifts leads to higher change in the ion density distribution in edge plasma of small size divertor tokamak when the unbalance neutral beam injection are considered (7) the comparison between radial heat flux at different momentum input shows that, the radial ion heat flux with larger ion temperature scale length in the case of co-injection neutral beam is larger than the ion heat flux with smaller ion temperature scale length in the case of counter-injection neutral beam.  相似文献   

3.
A two-point model is used to investigate the characteristics of scrape-off layer(SOL) plasma with the field line tracing method in the experimental advanced superconducting tokamak. The profiles of plasma density, temperature and particle flux on the divertor target calculated by the model are in reasonable agreement with experimental observation. Moreover, the profiles of plasma parameters on the divertor target strongly depend on the SOL magnetic topology or the equilibrium configuration from the modeling.  相似文献   

4.
The radial electric field in the edge plasma of small size divertor tokamak can be simulated by B2SOLPS0.5.2D fluid transport code. The simulation provides the follow results: (1) Switching on and off the part of the parallel plasma viscosity driven by parallel ion diamagnetic heat flux (Bekheit in J. Fusion Energ 27(4), 338–345, 2008; Schneider et al. in Nucl. Fusion 41:387, 2001) and Counter-NBI plasma heating change profile of radial electric field significantly. (2) Switching on and off the parallel plasma viscosity driven by parallel ion diamagnetic heat flux leads to the radial electric field is toroidal magnetic field dependence (3) For the case of counter-NBI plasma heating, the switching on and off the current driven by part parallel plasma viscosity depends on the ion diamagnetic heat flux leads to the ion poloidal velocity is toroidal magnetic field BT dependence. (4) The profile of the radial electric field in edge plasma of small size divertor tokamak is consistent with poloidal rotation velocity.  相似文献   

5.
Developing a reactor compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. Application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising Li results in NSTX and related modeling calculations motivated the radiative liquid lithium divertor (RLLD) concept [1]. In the RLLD, Li is evaporated from the liquid lithium (LL) coated divertor strike point surface due to the intense heat flux. The evaporated Li is readily ionized by the plasma due to its low ionization energy, and the poor Li particle confinement near the divertor plate enables ionized Li ions to radiate strongly, resulting in a significant reduction in the divertor heat flux. This radiative process has the desired effect of spreading the localized divertor heat load to the rest of the divertor chamber wall surfaces, facilitating divertor heat removal. The modeling results indicated that the Li radiation can be quite strong, so that only a small amount of Li (∼a few mol/s) is needed to significantly reduce the divertor peak heat flux for typical reactor parameters. In this paper, we examine an active version of the RLLD, which we term ARLLD, where LL is injected in the upstream region of divertor. We find that the ARLLD has similar effectiveness in reducing the divertor heat flux as the RLLD, again requiring only a few mol/s of LL to significantly reduce the divertor peak heat flux for a reactor. An advantage of the ARLLD is that one can inject LL proactively even in a feedback mode to insure the divertor peak heat flux remains below an acceptable level, providing the first line of defense against excessive divertor heat loads which could result in damage to divertor PFCs. Moreover, the low confinement property of the divertor (i.e., <1 ms for Li particle confinement time) makes the ARLLD response fast enough to mitigate the effects of possible transient events such as large ELMs.  相似文献   

6.
To facilitate the design of the China Fusion Engineering Testing Reactor (CFETR), predictive modeling for the assessment and optimization of the divertor performances is an indispensable approach. This paper presents the modeling of the edge plasma behaviors as well as the W erosion and transport properties in CFETR with ITER-like divertor by using the B2-Eirene/SOLPS 5.0 code package together with the Monte Carlo impurity transport code DIVIMP. As expected, SOLPS modeling of divertor-SOL plasmas finds that the peak heat flux onto the divertor targets greatly exceeds 10 MW/m2, an engineering limit posed to the steady-state and/or long-pulse operation of the next-step fusion devices, for a wide range of plasma conditions, and thus modeling of Ar puffing by scanning the puffing rate for radiative divertor is performed. As the increase of the Ar puffing rate, the peak target heat fluxes and plasma temperature decreases exponentially,reflecting that Ar puffing is highly effective at power exhausting. Based on the ion fluxes from SOLPS, the W erosion is calculated by taking into consideration the bombardment of both D and Ar ions, and then the W plasma concentrations are calculated based on the W erosion fluxes using DIVIMP. The calculations show that if the Ar puffing only being used to reduce the divertor heat load, the W plasma contamination in the core plasma exceeds the tolerable value (<10?5), which demonstrates that some further upgrading of the divertor geometry is still needed.  相似文献   

7.
In HL-2A tokamaks, the behavior of heat flux deposited on the divertor targets has been studied during deuterium gas fuelling. The heat flux is reduced significantly after supersonic molecular beam injection (SMBI) fuelling during Ohmic and electron cyclotron resonance heating (ECRH) divertor discharges. The SMBI fuelling causes an increase in the plasma density and this change results in the experienced change of the edge properties. Most of this reduction in divertor target heat flux occurs together with a high plasma radiation region located at near the X-point. The largest reduction in heat flux profiles is observed at the outboard divertor separatrix strike point, while the heat flux far from the strike point remains almost unchanged. In particular, with SMBI multi-pulses gas fuelling, a partially detached divertor regime is observed with a highly radiating region at the X-point. With the onset of the partially detached divertor regime, a sudden drop in both heat flux and power flow on the divertor target is observed. The reduction in power load on the divertor targets is roughly equal to the increase in plasma radiation loss.  相似文献   

8.
Div-III, a divertor with solid tungsten target tiles for ASDEX Upgrade is designed and tested and will be installed in 2013. It is a further step in exploring tungsten as material for plasma facing components. It avoids the restrictions of tungsten coatings on graphite and realizes an operation range up to 50 MJ energy removing capability in the outer divertor. In addition, it allows physics investigation such as erosion and deuterium retention as well as effects of castellation and target tilting. The design of the target itself and the attachment was optimized with FE-analysis and was intensively high heat tested up to a double overload. Cyclic tests reveal that the target and the attachment can be operated with the design load of 50 MJ without any damage. Even a twofold overload results in local recrystallization and minor cracks but the targets did not fail during operation. The redesign of the divertor structure was used to increase the conductance between the cryo-pump and the divertor region. The impact of the changed pumping efficiency was investigated with SOLPS/Eirene modeling. The modeling results are an indication for an easier access to lower SOL densities as expected for a higher pumping efficiency in the main chamber.  相似文献   

9.
The tokamak simulation code (TSC) is employed to simulate the complete evolution of a disruptive discharge in the experimental advanced superconducting tokamak.The multiplication factor of the anomalous transport coefficient was adjusted to model the major disruptive discharge with double-null divertor configuration based on shot 61 916.The real-time feed-back control system for the plasma displacement was employed.Modeling results of the evolution of the poloidal field coil currents,the plasma current,the major radius,the plasma configuration all show agreement with experimental measurements.Results from the simulation show that during disruption,heat flux about 8 MW m-2 flows to the upper divertor target plate and about 6 MW m-2 flows to the lower divertor target plate.Computations predict that different amounts of heat fluxes on the divertor target plate could result by adjusting the multiplication factor of the anomalous transport coefficient.This shows that TSC has high flexibility and predictability.  相似文献   

10.
Disruptions are the most dangerous instabilities in tokamak plasma. During plasma disruption, the large amounts of energy will be deposited on Plasma Facing Components (PFCs) which is a damaging threat for the divertor target and the first wall materials. Therefore, studying the characteristic of heat deposition on the first wall is very significant. The Infrared (IR) camera is an effective tool to measure the surface temperature profile on the first wall on the Experimental Advanced Superconducting Tokamak (EAST). With a finite difference method, the heat flux arrived to the divertor can be calculated from the surface temperature. However, the surface layer on the divertor has a great influence on the calculation of the heat flux on the divertor. The numerical method for solving heat conduction for semi-infinite model is given in this paper. And the thermal resistance of surface layers is considered in this numerical method. In addition, the distribution of heat flux on the divertor during disruption is also shown.  相似文献   

11.
One of the critical issues to be solved for HL-2M is the power and particle exhaust. Divertor target plate geometry strongly influences the plasma profiles by controlling the neutral recycling pattern, which has in turn a strong effect on the symmetry and stability of the divertor plasma and finally on the whole edge region. The numerical simulation software SOLPS5.0 Pack- age is used to design and explore the divertor target plates for HL-2M. We choose two divertor geometries, and assess the heat flux on the target plates and first wall, then further discuss the di- vertor plasma parameters, and how private flux baffling affects both neutral recirculation pattern and pumping efficiency.  相似文献   

12.
The edge plasma code package SOLPS5.0 is employed to simulate the divertor power footprint widths of the experimental advanced superconducting tokamak(EAST)L-mode and ELM-free H-mode plasmas.The divertor power footprint widths,which consist of the scrape-off layer(SOL)widthλ_q and heat spreading 5,are important physical parameters for edge plasmas.In this work,a plasma current scan is implemented in the simulation to obtain the dependence of the divertor power footprint width on the plasma current I_p.Strong inverse scaling of the SOL width with I_p has been achieved for both L-mode and H-mode plasmas in the forms ofλ_(q,L-mode)=4.98×I_p~(-0.68)andλ_(q,H-mode)=1.86×I_p~(-1.08).Similar trends have also been demonstrated in the study of heat spreading with S_(L-mode)=1.95×I_p~(-0.542)and S_(H-mode)=0.756×I_p~(-0.872).In addition,studies on divertor peak heat load and the magnetic flux expansion factor show that both of them are proportional to plasma current.The simulation work here can act as a way to explore the power footprint widths of future tokamak fusion devices such as ITER and the China Fusion Engineering Test Reactor(CFETR).  相似文献   

13.
The stellarator experiment Wendelstein 7-X (W7-X) is designed for stationary plasma operation (30 min). Plasma facing components (PFCs) such as the divertor targets, baffles, heat shields and wall panels are being installed in the plasma vessel (PV) in order to protect it and other in-vessel components. The different PFCs will be exposed to different magnitude of heat loads in the range of 100 kW/m2–10 MW/m2 during plasma operation. An important issue concerning the design of these PFCs is the thermo-mechanical analysis to verify their suitability for the specified operation phases. A series of finite element (FE) simulations has been performed to achieve this goal. Previous studies focused on the test divertor unit (TDU) and high heat flux (HHF) target elements. The paper presents detailed FE thermo-mechanical analyses of a prototype HHF target module, baffles, heat shields and wall panels, as well as benchmarking against tests.  相似文献   

14.
We present a new magnetic geometry, called the Super X divertor (SXD), that could potentially solve the enormous heat exhaust problem of next-generation high power-density experiments and fusion reactors. With only small changes in net coil currents, the axisymmetric SXD modification of the standard divertor (SD) coils greatly increases the divertor radius, the line length, and the plasma-wetted area. The lower B at large R decreases parallel heat flux and hence lowers the plasma temperature at SXD plates to below 10 eV, allowing higher divertor radiation fractions. The SXD could safely exhaust five times more heat than an SD, is unique in allowing adequate shielding of divertor target from neutron damage, and can enable much improved, reactor-relevant core plasma performance.  相似文献   

15.
We are planning to start a study of divertor simulation under the closely resemble to actual fusion plasma environment making use of the advantage of open magnetic field configuration and to contribute the solution for realizing the divertor in ITER as a future research plan of Plasma Research Center of the University of Tsukuba. In the research plan, the concepts of two divertor devices are introduced. One has an axi-symmetric divertor configuration with the separatrix which is similar to toroidal divertor of torus systems and the other is a high heat flux divertor simulator by using an end-mirror exit of the existing tandem mirror device. Development of magnetic field configuration for ensuring the MHD stability is under way and a designed example is investigated under the optimal condition for plasma production. Consideration of plasma heating scheme using Fokker-Planck simulation code was successfully performed at both axi-symmetric divertor and end-mirror regions. Preparative experiments using calorimeter, Mach probe and high-speed camera have been started at the end-mirror region and the heat flux density of the level in 1-10 MW m−2 was achieved in standard hot-ion mode plasma-confining experiments, which gives a clear prospect of generating the required heat flux density for divertor studies.  相似文献   

16.
Using a single null divertor configuration, heat flux intensity and its profile on the divertor plates as a function of plasma current and density were measured with an infrared camera and thermocouples. The vertical width of the heat flux on the divertor plates 2λ is ≈ 10 cm at the lower separatrix and is ≈ 5.5 cm at the upper separatrix. A diffusion coefficient D which is obtained from the measurement of the diffusion length across the scrape-off field lines is roughly proportional to and its magnitude is on the order of Bohm diffusion. The heat flux on the plates decreases by more than a factor of 5 with increasing electron density in the main plasma and is much smaller than that on the limiters in non-diverted plasmas. Only 3% of ohmic input power goes into the divertor plates at high density of the main plasma, while ≈ 20% goes in at low density. The decrease of heat flux is in good agreement with the increase of radiation loss in the divertor region. The heat flux on the divertor plates can be reduced by remote radiative cooling in high density discharges.  相似文献   

17.
One of the most critical issues for the steady state fusion reactor is the heat flux in the divertor target. This paper proposes a liquid lithium divertor system to solve this problem. The proposed divertor system consists of a liquid lithium target, an evaporation chamber and a differential evacuation chamber. The heat coming from the fusion plasma along the divertor leg is removed by evaporation of lithium. The lithium vapor is condensed on the wall and is circulated with a pump. The coolant temperature for the wall is high enough to drive a power generator. Narrow slits along the divertor leg and the differential evacuation chamber reduce leakage of lithium vapor to the plasma chamber. A preliminary estimation predicts that the lithium ion density in the core plasma is lower than the plasma density.  相似文献   

18.
A newly designed divertor Langmuir probe diagnostic system has been installed in a rare closed divertor of the HL-2A tokamak and steadily operated for the study of divertor physics involved edge-localized mode mitigation, detachment and redistribution of heat flux, etc. Two sets of probe arrays including 274 probe tips were placed at two ports (approximately 180° separated toroidally), and the spatial and temporal resolutions of this measurement system could reach 6 mm and 1 μs, respectively. A novel design of the ceramic isolation ring can ensure reliable electrical insulation property between the graphite tip and the copper substrate plate where plasma impurities and the dust are deposited into the gaps for a long experimental time. Meanwhile, the condition monitoring and mode conversion between single and triple probe of the probe system could be conveniently implemented via a remote-control station. The preliminary experimental result shows that the divertor Langmuir probe system is capable of measuring the high spatiotemporal parameters involved the plasma density, electron temperature, particle flux as well as heat flux during the ELMy H-mode discharges.  相似文献   

19.
During the discharging of Tokamak devices,interactions between the core plasma and plasma-facing components(PFCs) may cause exorbitant heat deposition in the latter. This poses a grave threat to the lifetimes of PFCs materials. An infrared(IR) diagnostic system consisting of an IR camera and an endoscope was installed on an Experimental Advanced Superconducting Tokamak(EAST) to monitor the surface temperature of the lower divertor target plate(LDTP) and to calculate the corresponding heat flux based on its surface temperature and physical structure, via the finite element method. First, the temperature obtained by the IR camera was calibrated against the temperature measured by the built-in thermocouple of EAST under baking conditions to determine the true temperature of the LDTP. Next, based on the finite element method, a target plate model was built and a discretization of the modeling domain was carried out. Then, a heat conduction equation and boundary conditions were determined. Finally, the heat flux was calculated. The new numerical tool provided results similar to those for DFLUX; this is important for future work on related physical processes and heat flux control.  相似文献   

20.
Thehigh heat-flux divertor of the Wendelstein 7-X large stellarator experiment consists of 10 divertor units which are designed to carry a steady-state heat flux of 10 MW/m2. However, the edge elements of this divertor are limited to only 5 MW/m2, and may be overloaded in certain plasma scenarios. It is proposed to reduce this heat by placing an additional “scraper element” in each of the ten divertor locations. It will be constructed using carbon fiber composite (CFC) monoblock technology. The design of the monoblocks and the path of the cooling tubes must be optimized in order to survive the significant steady-state heat loads, provide adequate coverage for the existing divertor, be located within sub-millimeter accuracy, and take into account the boundaries to other in vessel components, all at a minimum cost. Computational fluid dynamics modeling has been performed to examine the thermal transfer through the monoblock swirl tube channels for the design of the monoblock orientation. An iterative physics modeling and computer aided design process is being performed to optimize the placement of the scraper element within the severe spatial restrictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号