首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Spray dryers fitted with rotary atomizers are commonly used in diverse industries to produce engineered powders on a large scale. Scale-up of such units is still largely empirical and based on prior experience and know-how. In the present study, a three-dimensional spray dryer with rotary atomizer is investigated numerically with a commercial CFD code. Continuous-phase, i.e., air, conservation equations are formulated in the Eulerian model while the droplet or particle equations are set up in the Lagrangian model. Two-way coupling between the continuous and dispersed phases is taken into account in the governing equations. The stochastic approach is used to predict the particle trajectories. The RNG k - ε turbulence model was used. Typical results, viz. air velocity, temperature, humidity profiles, and particle trajectories are presented and discussed. Compared with the pressure nozzle spray dryer, more volume of drying chamber is used effectively by the rotating disc type spray dryer. It is found that evaporation and drying take place mainly in the region and in the vicinity of first contact between air and spray. A parametric study is presented and, where appropriate, comparison is made with experimental data obtained with the simulated spray dryer.  相似文献   

3.
Abstract

Spray dryers fitted with rotary atomizers are commonly used in diverse industries to produce engineered powders on a large scale. Scale-up of such units is still largely empirical and based on prior experience and know-how. In the present study, a three-dimensional spray dryer with rotary atomizer is investigated numerically with a commercial CFD code. Continuous-phase, i.e., air, conservation equations are formulated in the Eulerian model while the droplet or particle equations are set up in the Lagrangian model. Two-way coupling between the continuous and dispersed phases is taken into account in the governing equations. The stochastic approach is used to predict the particle trajectories. The RNG k ? ? turbulence model was used. Typical results, viz. air velocity, temperature, humidity profiles, and particle trajectories are presented and discussed. Compared with the pressure nozzle spray dryer, more volume of drying chamber is used effectively by the rotating disc type spray dryer. It is found that evaporation and drying take place mainly in the region and in the vicinity of first contact between air and spray. A parametric study is presented and, where appropriate, comparison is made with experimental data obtained with the simulated spray dryer.  相似文献   

4.
5.
The air flow patterns in an industrial milk powder spray dryer have been investigated. Isothermal three-dimensional transient simulations in the absence of atomised liquid droplets have been carried out using the commercial CFD code (CFX10.0) in which the transient Navier–Stokes equations are solved. The shear stress transport (SST) turbulence model was implemented to model the effects of turbulence.  相似文献   

6.
This paper reports on a research project that studies the effect of particle size on the coating efficiency and coating uniformity in a powder coating system using the computational fluid dynamics as a modelling tool. The numerical simulations are conducted for different particle sizes with different distances between the spray gun and the coating part and different positions of the powder spray gun pattern adjuster sleeve (PAS). This study can provide detailed information on air flow pattern and particle trajectories inside the powder coating booth, and the coating film thickness on the coated part as well as the particle transfer efficiency (PTE). In numerical simulations, the air flow field is obtained by solving three‐dimensional Navier‐Stokes equations with standard κ‐ϵ turbulence model and non‐equilibrium wall function. The second phase, the coating powder, consists of spherical particles that are dispersed in the continuous phase, the air. In addition to solving transport equations for the air, the trajectories of the particles are calculated by solving the particle motion equations using the Lagrangian method. It is assumed that particle‐particle interaction can be neglected. The electrostatic field is modelled by solving the Laplace equation.  相似文献   

7.
This article presents the findings of a numerical simulation model of the spray-drying process in a two-stage horizontal chamber design with the aid of a computational fluid dynamic (CFD) model. The model describes heat, mass, and momentum transfer between two phases; namely, a continuous gas phase and a discrete phase of droplets (or particles), using the finite volume method. In this study, a new two-dimensional horizontal spray dryer (HSD) geometry is considered as a pilot study into the spray-drying process in this novel chamber configuration. The tested model is able to predict some important features of the spray-drying process, such as air flow patterns indicating recirculation zones and particle trajectory plots. Some performance parameters for spray drying, such as the rate of evaporation, average volumetric heat and mass transfer rates, etc., are calculated and discussed. This two-stage drying process especially applicable for the horizontal spray dryer (HSD) model is investigated and modeled. The bottom wall of the HSD is assumed to be a shallow fluid bed used for second stage drying. In this article, the fluid bed drying conditions are changed and compared. The drying within the fluid bed itself is not modeled in this study, however. It is shown that the particle residence time is higher when the fluid bed is included. The drying performance of this two-stage horizontal spray dryer is expected to be better than that of a single-stage dryer.  相似文献   

8.
This article presents the findings of a numerical simulation model of the spray-drying process in a two-stage horizontal chamber design with the aid of a computational fluid dynamic (CFD) model. The model describes heat, mass, and momentum transfer between two phases; namely, a continuous gas phase and a discrete phase of droplets (or particles), using the finite volume method. In this study, a new two-dimensional horizontal spray dryer (HSD) geometry is considered as a pilot study into the spray-drying process in this novel chamber configuration. The tested model is able to predict some important features of the spray-drying process, such as air flow patterns indicating recirculation zones and particle trajectory plots. Some performance parameters for spray drying, such as the rate of evaporation, average volumetric heat and mass transfer rates, etc., are calculated and discussed. This two-stage drying process especially applicable for the horizontal spray dryer (HSD) model is investigated and modeled. The bottom wall of the HSD is assumed to be a shallow fluid bed used for second stage drying. In this article, the fluid bed drying conditions are changed and compared. The drying within the fluid bed itself is not modeled in this study, however. It is shown that the particle residence time is higher when the fluid bed is included. The drying performance of this two-stage horizontal spray dryer is expected to be better than that of a single-stage dryer.  相似文献   

9.
Z. Li  J. Zhu  C. Zhang   《Powder Technology》2005,150(3):155-167
Numerical simulations for gas–solid two-phase flows were conducted for an experimental coating booth and an industrial coating booth to study the effect of the coating powder size on the performance of the coating process. To optimize coating parameters, simulations were conducted for different coating parameters, such as the size of the coating part, the distance between the coating part and the spray gun, the air flow rate and particle flow rate from the spray gun, the position of the pattern adjust sleeve of the spray gun, and the electrostatic field, in order to increase the coating process efficiency and coating quality.

In numerical simulations, the air flow field is obtained by solving three-dimensional Navier–Stokes equations with standard κ turbulence model and non-equilibrium wall function. The second phase, the coating powder, consists of spherical particles and is dispersed in the continuous phase, the air. In addition to solving transport equations for the air, the trajectories of the particles are calculated by solving the particle motion equations using Lagrangian method. It is assumed that the particle–particle interaction can be neglected due to low particle volume fraction in coating systems. The electrostatic field is predicted by solving the Laplace equation.  相似文献   


10.
The work presented here reports on the numerical simulation of an electrostatic powder coating process that uses a commercial computational fluid dynamic code, FLUENT v6.1. The purpose of this study was to understand the gas and particle flow fields inside a coating booth under given operating conditions and the effect of particle sizes on its trajectories and the final coating quality. The air and powder particle flows in a coating booth were modeled as a three-dimensional turbulent continuous gas flow with solid particles as a discrete phase. The continuous gas flow was calculated by solving Navier-Stokes equations including the standard k − ε turbulence model with non-equilibrium wall function and the discrete phase was modeled based on the Langrangian approach. Since the solid phase volumetric fraction was less than 0.1%, the effect of particle-particle interaction on particle trajectories was not taken into account. In addition to drag force and gravity, the electrostatic force including the effect of space charge due to the free ions was considered in the equation of motion and implemented using user defined scalars and functions. The governing equations were solved using the second order upwind scheme. Information was provided on the particle trajectories with respect to the particle diameters that could be used to develop suitable operating conditions for the use of fine powders in a powder coating process.  相似文献   

11.
X. Li  I. Zbici&#x  ski 《Drying Technology》2005,23(8):1681-1691
This article presents CFD modeling of drying process in a cocurrent spray dryer. Initial parameters of discrete and continuous phase were determined experimentally and used in the model. The theoretical results were compared with experimental data and sensitivity of the simulation results to the selected parameters was determined. Results show that the applied gas turbulence model, drying kinetics, effect of atomizing air, and turbulent particle dispersion are crucial parameters that control accuracy of the CFD modeling.  相似文献   

12.
Fluidized bed dryers are often used to extract water from granular materials. When the drying process is mainly limited by the resistance against water transport inside the particle the drying behaviour is said to be diffusion-limited. In the literature there are several models that predict this drying process with very diverging results. In this study a model is set up to arrive at a better prediction for this drying process. The heat and mass transfer in the granular material and the drying air is described. The resulting equations are solved numerically. The model must be extended to incorporate the heat capacity of the dryer.  相似文献   

13.
The mass, momentum and energy exchange between the droplets and particles and the drying medium in a spray dryer is a complex process. One approach to modeling this process is to apply the particle-sourcein- cell model in which the droplets and particles are regarded as sources of mass, momentum and energy to the conveying gas flow. This mode1 is app1ied to a counter-current spray dryer. The results show the strong interaction between the droplet/particle and gas flow fields. The calculations show the inadequacy of predictions in which the exchange between phases is ignored.  相似文献   

14.
Yan Jin 《Drying Technology》2013,31(3):371-381
Development of high-performance spray dryers that are more energy efficient and are able to produce high-quality milk powders is very important for the future of the dairy powder industry. Understanding and optimization of the exiting dryers are also of great value. Computational fluid dynamics is a powerful tool to simulate and help understanding the characteristics of spray drying and to introduce potentially improved designs. The present study has concentrated on the multiphase flow in an industrial-scale spray dryer using the CFD package FLUENT. A Eulerian-Lagrangian approach is used in the simulations. A new drying model, REA model, for milk particles has been implemented for the first time in a CFD application. The numerical results match well with the plant data. It is argued that the “reflecting wall” boundary condition produced more physically correct results for normal dryer operation than the “escaping wall” boundary condition. The second one is an oversimplification. The influences of the particle size and particle size distribution, residence time, kinetic energy, and maximum temperature have been analyzed. The initial droplet size range was set to be from 100 to 500 µm with Rosin-Rammler distribution function. One significant result of this study is that rather dense particle clouds of medium-size particles (224–285 µm) are found near the side walls. They are transported upwards along the side wall (conical wall surface) and then are dispersed. It is found the particles with initial diameters of between 225 and 270 µm have the largest residence times.  相似文献   

15.
Yan Jin 《Drying Technology》2013,31(10):1018-1027
Gas/particle interaction plays an important role in modern spray dryers and may have influences on wall deposition, agglomeration, powder degradation, etc. In the present study, the three-dimensional (3-D) transient multiphase flow in an industrial-scale spray dryer has been investigated using the CFD package FLUENT. The Eulerian–Lagrangian approach and two-way coupling method were used in the simulations. The reaction engineering approach (REA model) for milk particles has been implemented. Some new characteristics of the gas flow pattern and the particle behavior (e.g., temperature–time profiles) were identified from the numerical results; for example, the milk particles flow in such a way that makes the central jet oscillation more nonlinear. The discrete phase enhances the turbulence near the air/droplet inlet but damps it downstream. The transient turbulent flow causes significant uncertainties in the particle tracking, which presented some challenges in simulations. The study has highlighted the importance in performing 3-D transient simulations in order to understand the industrial-scale dryers.  相似文献   

16.
The trajectory of atomized droplets in a mixed-flow spray dryer depends on the size and configuration of the drying chamber, the mode of introduction of the drying air, the location and number of nozzles, and the resultant spray pattern. Differential equations are used to represent the droplet trajectory and air pattern in a proposed method for predicting the distance traveled by individual ceramic particles in the dryer.  相似文献   

17.
A quasi-one dimensional model taking into account hindered drying beyond the critical tmisture content and droplet size distribution is used to scale-up nozzle tower type of a spray dryer with uniformly distributed air entry, based on pilot plant data. A pilot plant with 8 m high and 1.7 m diameter spray dryer is used to collect the drying data. Equilibrium and critical mistwe contents of the particles are also experimentally msured. The index of drying rate in the hindered drying period is calculated frun the pilot plant data. This index is used in the M e 1 to determine the drying capacity and thereby the mixinnnn particle size that can be produced ina 3.5 m dimoeter 12 m high nozzle t- type of spray dryer. Experiments are carried out in this spray dryer to verify the calculated values of the spray drying capacity. It is s h m that the model when used along with the pilot plant data is adequate for scale-up calaculations for nozzle taer type of spray dryers.  相似文献   

18.
A quasi-one dimensional model taking into account hindered drying beyond the critical tmisture content and droplet size distribution is used to scale-up nozzle tower type of a spray dryer with uniformly distributed air entry, based on pilot plant data. A pilot plant with 8 m high and 1.7 m diameter spray dryer is used to collect the drying data. Equilibrium and critical mistwe contents of the particles are also experimentally msured. The index of drying rate in the hindered drying period is calculated frun the pilot plant data. This index is used in the M e 1 to determine the drying capacity and thereby the mixinnnn particle size that can be produced ina 3.5 m dimoeter 12 m high nozzle t- type of spray dryer. Experiments are carried out in this spray dryer to verify the calculated values of the spray drying capacity. It is s h m that the model when used along with the pilot plant data is adequate for scale-up calaculations for nozzle taer type of spray dryers.  相似文献   

19.
The technique of particle image velocimetry has been used to produce good quality instantaneous velocity maps of the gas and spray phases within a pilot plant co-current spray dryer. Good quality flow visualisation data provided by the use of the laser sheet as an intense source of illumination has indicated that the air and spray flows were characterised by an offset central jet with down flowing (right hand side) and up flowing (left hand side) wall streams. This is significantly different from what would normally be expected and it was suggested that this was possibly due to a maldistribution of the air phase on inlet to the dryer.  相似文献   

20.
ABSTRACT

Fluidized bed dryers are often used to extract water from granular materials. When the drying process is mainly limited by the resistance against water transport inside the particle the drying behaviour is said to be diffusion-limited. In the literature there are several models that predict this drying process with very diverging results. In this study a model is set up to arrive at a better prediction for this drying process. The heat and mass transfer in the granular material and the drying air is described. The resulting equations are solved numerically. The model must be extended to incorporate the heat capacity of the dryer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号