首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anatase-type TiO2 powder containing sulfur with absorption in the visible region was directly formed as particles with crystallite in the range 15–88 nm by thermal hydrolysis of titanium(III) sulfate (Ti2(SO4)3) solution at 100°–240°C. Because of the presence of ammonium peroxodisulfate ((NH4)2S2O8), the yield of anatase-type TiO2 from Ti2(SO4)3 solution was accelerated, and anatase with fine crystallite was formed. Anatase-type TiO2 doped with ZrO2 up to 9.8 mol% was directly precipitated as nanometer-sized particles from the acidic precursor solutions of Ti2(SO4)3 and zirconium sulfate in the presence and the absence of (NH4)2S2O8 by simultaneous hydrolysis under hydrothermal conditions at 200°C. By doping ZrO2 into TiO2 and with increasing ZrO2 content, the crystallite size of anatase was decreased, and the anatase-to-rutile phase transformation was retarded as much as 200°C. The anatase-type structure of ZrO2-doped TiO2 was maintained after heating at 1000°C for 1 h. The favorable effect of doping ZrO2 to anatase-type TiO2 on the photocatalytic activity was observed.  相似文献   

2.
Rutile or anatase may be depolymerized and complexed by sequential treatment with (i) H2SO4/(NH4)2SO4, (ii) H2O, and (iii) catechol/NH4OH to produce the intermediate (NH4)2(Ti(catecholate)3) · 2H2O. Treatment with Ba(OH)2· 8H2O leads to an acid-base reaction generating Ba(Ti(catecholate)3) · 3H2O, in which the Ba:Ti ratio is held at 1:1 at the molecular level. Calcination produces BaTiO3 powder.  相似文献   

3.
The precursor [NH4]2[Ti(catecholate)3] · 2H2O is known to react with Ba(OH)2· 8H2O in an acid/base process that generates Ba[Ti(catecholate)3] · 3H2O, a compound which undergoes low-temperatue calcination to produce BaTiO3 powder. Attempts to develop similar routes to PbTiO3 have been frustrated, since lead(II) hydroxide does not exist. The amphoteric yellow PbO and the basic oxide, Pb6O(OH)64+, are both insufficiently basic to react with [NH4]2[Ti(catecholate)3] · 2H2O. Based on the large sizes of both the [Ti(catecholate)3]2- anion and the Pb2+ cation, a precipitation method has been developed in which lead nitrate and [NH4]2[Ti(catecholate)3] · 2H2O are added together in an aqueous medium causing precipitation and leaving only NH4NO3 in solution. The lead-titanium-catecholate complex that forms in this manner undergoes low-temperature pyrolysis to produce PbTiO3. SEM indicates a submicrometer ultimate crystallite size.  相似文献   

4.
The products obtained from the roomtemperature reaction of ammonium bifluoride and zirconium fluoride monohydrate are ammonium heptafluorozirconate ((NH4)3ZrF2), liquid water, and hydrogen fluoride. Ammonium bifluoride and zirconium fluoride monohydrate were reacted prior to glass batching, producing dry ammonium heptafluorozirconate which was used to prepare a high-quality ZBLAN fluoride glass.  相似文献   

5.
Mechanochemical reaction between ammonium fluoride (NH4F) and gallium fluoride trihydrate (GaF3·3H2O) at a ratio of 3:1 is conducted by grinding the mixture at room temperature using a planetrary ball mill. A single phase of ammonium hexafluorogallate ((NH4)3GaF6) is obtained as a product of the reaction. Other alkali hexafluorogallates (K3GaF6, Na3GaF6, and Li3GaF6) also can be synthesized by grinding constituent components (AF and GaF3·3H2O) under proper grinding conditions. A reaction mechanism related to the dissolution of alkali fluorides in water is suggested.  相似文献   

6.
Direct precipitation of nanometer-sized particles of ceria–zirconia (CeO2–ZrO2) solid solutions with cubic and tetragonal structures was successfully attained from acidic aqueous solutions of cerium(III) nitrate (Ce(NO3)3) and zirconium oxychloride (ZrOCl2) through the addition of ammonium peroxodisulfate ((NH4)2S2O8), because of promotion of the hydrolysis via the oxidation of Ce3+ ions, together with the simultaneous hydrolysis of ZrOCl2 under hydrothermal conditions. Ultrafine CeO2 particles also could be formed from relatively concentrated aqueous solutions of the same trivalent cerium salt in the presence of (NH4)2S2O8 via hydrolysis. The crystallite size and lattice strain of as-precipitated solid solutions varied, depending on the composition within the CeO2–ZrO2 system. Creation of a solid solution of ZrO2 into a fluorite-type CeO2 lattice clearly introduced lattice strain, as a consequence of the decreasing crystallite size. Both the direct precipitation process and the effectiveness of the presence of (NH4)2S2O8 for the synthesis of CeO2–ZrO2 solid solutions were discussed.  相似文献   

7.
Two bismuth oxyfluorides, BiOF and BiO0.5F2, have been prepared by soft chemistry. These two compounds are of interest for application as new type of positive electrode active materials in secondary lithium battery. BiOF was obtained directly from the fluorination of Bi2O3 by a saturated aqueous solution of NH4F. BiO0.5F2 was obtained by the hydrolysis of β-NH4BiF4 at 70°C. The ammonium bismuth fluoride β-NH4BiF4, which is a new orthorhombic form of NH4BiF4, was obtained by reacting BiF3 in a saturated aqueous solution of NH4F. Two other ammonium bismuth fluorides, (NH4)0.5BiF3.5 and NH4Bi3F10, were also prepared by annealing β-NH4BiF4 at a relatively low temperature under inert atmosphere. The existence of the fluorite (NH4)0.5BiF3.5 is reported for the first time in this paper.  相似文献   

8.
Hollow BaTiO3 and anatase spheres were prepared from multilayered colloidal titanate particles. An inorganic precursor, titanium (IV) bis(ammonium lactate) dihydroxide (TALH) (chemical formula: [CH3CH(O–)CO2–NH4]2Ti(OH)2) was used. First, a layer-by-layer (LBL) colloid-templating method was employed using TALH to generate monodispersed hollow titanate spheres. These spheres were then treated in a Ba(OH)2 solution or distilled water under hydrothermal conditions to transform them into hollow BaTiO3 or anatase spheres, respectively.  相似文献   

9.
The influence of ammonium chloride (NH4Cl) on the rheological properties and sedimentation behavior of aqueous silica (SiO2) suspensions of varying solids volume fraction (φs) was studied. SiO2 suspensions with low NH4Cl concentration (≤0.05 M , pH 5.2) exhibited Newtonian behavior and a constant settling velocity ( U ). The volume fraction dependence was well described by the Richardson–Zaki form, U = U 0(1 −φs) n , where n = 4.63 and U 0= 1.0419 × 10−5 cm/s. At higher NH4Cl concentrations (0.07–2.0 M , pH 5.2), suspensions exhibited shear thinning and more complicated sedimentation behavior due to their aggregated nature. For all suspensions studied, however, the apparent suspension viscosity, characteristic cluster size, and initial settling velocity were greatest at ∼0.5 M NH4Cl and exhibited a similar dependence on salt concentration. Above 0.5 M NH4Cl, considerable restabilization was observed. This behavior cannot be explained by traditional DLVO theory.  相似文献   

10.
Undoped or Y2O3-doped ZrO2 thin films were deposited on self-assembled monolayers (SAMs) with either sulfonate or methyl terminal functionalities on single-crystal silicon substrates. The undoped films were formed by enhanced hydrolysis of zirconium sulfate (Zr(SO4)·4H4O) solutions in the presence of HCl at 70°C. Typically, these films were a mixture of two phases: nanocrystalline tetragonal- ( t -) ZrO2 and an amorphous basic zirconium sulfate. However, films with little or no amorphous material could be produced. The mechanism of film formation and the growth kinetics have been explained through a coagulation model involving homogeneous nucleation, particle adhesion, and aggregation onto the substrate. Annealing of these films at 500°C led to complete crystallization to t -ZrO2. Amorphous Y2O3-containing ZrO2 films were prepared from a precursor solution containing zirconium sulfate, yttrium sulfate (Y2(SO4)38·H2O), and urea (NH2CONH2) at pH 2.2–3.0 at 80°C. These films also were fully crystalline after annealing at 500°C.  相似文献   

11.
A carbonate precursor of yttrium aluminum garnet (YAG) with an approximate composition of NH4AlY0.6(CO3)1.9(OH)2·0.9H2O was synthesized via a coprecipitation method from a mixed solution of ammonium aluminum sulfate and yttrium nitrate, using ammonium hydrogen carbonate as the precipitant. The precursor precipitate was characterized using chemical analysis, differential thermal analysis/thermogravimetry, X-ray diffractometry, and scanning electron microscopy. The sinterability of the YAG powders was evaluated by sintering at a constant rate of heating in air and vacuum sintering. The results showed that the precursor completely transforms to YAG at ∼1000°C via the formation of a yttrium aluminate perovskite (YAP) phase. YAG powders obtained by calcining the precursor at temperatures of ≤1200°C were highly sinterable and could be densified to transparency under vacuum at 1700°C in 1 h without additives.  相似文献   

12.
Tin(IV) oxide (SnO2) crystallizes at room temperature by adding hydrazine monohydrate ((NH2)2· H2O) to a hydrochloric acid solution of tin, followed by washing and drying. Well-densified SnO2 ceramics (99.8% of theoretical) with an average grain size of 0.9 μm have been fabricated by hot isostatic pressing for 2 h at 900°C and 196 MPa. Their Vickers hardness and bending strength are 14.4 GPa and 200 MPa, respectively. They exhibit an electrical conductivity of 2 × 10−3−9 × 10−3 S·cm−1 at room temperature.  相似文献   

13.
Fabrication of Translucent Magnesium Aluminum Spinel Ceramics   总被引:5,自引:0,他引:5  
A precursor for magnesium aluminum spinel powder, composed of crystalline ammonium dawsonite hydrate (NH4Al(OH)2CO3·H2O) and hydrotalcite (Mg6Al2(CO3)(OH)16·4H2O) phases, was synthesized via precipitation, using ammonium bicarbonate as the precipitant. The precursor was characterized by differential thermal analysis/thermogravimetry, X-ray diffractometry, and scanning electron microscopy. Reactive spinel powder, which could be densified to translucency under vacuum at 1750°C in 2 h without additives, was obtained by calcining the precursor at 1100°C for 2 h.  相似文献   

14.
Mixed solutions of Ca(NO3)2 and (NH4)2HPO4 with Ca/P = 1.50 were spray-pyrolyzed at 600°C to produce β-calcium orthophosphate (β-Ca3(PO4)2) powder; the spray-pyrolyzed powder was ground and then calcined at 600°C for 1 h. The best crystalline β-Ca3(PO4)2 powder was obtained from the solution with 1.80 mol.L–1 Ca(NO3)2, 1.20 mol.L–1 (NH4)2HPO4. The resulting powder was composed of primary particles with sizes of <0.5 μm. Dense β-Ca3(PO4)2 ceramics with a relative density of 96.1% could be fabricated by firing this compressed powder at 1070°C for 5 h.  相似文献   

15.
Synthesis and Characterization of a High-Purity AlN Powder   总被引:1,自引:0,他引:1  
High-purity AIN powder was synthesized by preparing high-purity (NH4)3 AIF6, decomposing the (NH4)3 AIF6 to AIF3, and reacting the AIF, at 800° to 1000°C with high-purity NH3. AIN powders could be synthesized with a cation purity of 99.99% and an oxygen content <0.2 wt%. The specific surface area depended on the process conditions and varied from 0.2 to 2.6 m2/g. The thermodynamics of the process are evaluated and the influence of various process parameters on the resulting powder characteristics are described.  相似文献   

16.
A silicon diimide gel Si(NH) x (NH2) y (NMe2) z was prepared by an acid-catalyzed ammonolysis of tris(dimethylamino)silylamine. Pyrolysis of the gel at 1000°C under NH3 flow led to the formation of an amorphous silicon nitride material without carbon contamination. All of the gel and pyrolyzed products exhibited a mesoporous structure with a high surface area and narrow pore-size distribution. The effective surface area of the pyrolyzed silicon nitride residues decreases with increasing temperature, but the heating rate during pyrolysis has little influence on the surface area and pore-size distribution of the final mesoporous ceramic Si3N4 products because of the highly cross-linked structures of the precursor silicon diimide gel.  相似文献   

17.
Low-Temperature Synthesis of Praseodymium-Doped Ceria Nanopowders   总被引:1,自引:0,他引:1  
Praseodymium-doped ceria (CeO2) nanopowders have been synthesized via a simple but effective carbonate-coprecipitation method, using nitrates as the starting salts and ammonium carbonate as the precipitant. The precursors produced in this work are ammonium rare-earth double carbonates, with a general formula of (NH4)0.16Ce1− x Pr x (CO3)1.58·H2O (0 < x ≤ 0.20), which directly yield oxide solid solutions on thermal decomposition at a very low temperature of ∼400°C. Praseodymium doping causes a gradual contraction of the CeO2 lattice, because of the oxidation of Pr3+ to smaller Pr4+, and suppresses crystallite coarsening of the oxides during calcination. Dense ceramics have been fabricated from the thus-prepared nanopowders via pressureless sintering for 4 h at a low temperature of 1200°C.  相似文献   

18.
In this communication, we describe an inexpensive and feasible method for the preparation of hexagonal boron nitride (h–BN) nanorods in the absence of metal catalyst. Tertiary calcium phosphate (Ca3(PO4)2) and ammonium biborate hydrate (NH4HB4O7·3H2O) were selected as starting materials where calcium phosphate was used as a diluting agent to prevent the formation of bulk B2O3 during the thermolysis of ammonium biborate hydrate. The mixture was nitrided at 900°C in the flowing ammonia and was transformed into h–BN nanorods after subsequent crystallization. After crystallization at 1650°C for 2 h, the unique microstructure of h–BN nanorods was observed.  相似文献   

19.
Nano-sized TiO2 powders were prepared by controlled hydrolysis of TiCl4 and Ti(O-i-C3H7)4 solutions and nitrided in flowing NH3 gas at 700°–1000°C to form TiN. Nano-sized TiN was densified by spark plasma sintering at 1300°–1600°C to produce TiN ceramics with a relative density of 98% at 1600°C. The microstructure of the etched ceramic surface was observed by SEM, which revealed the formation of uniformly sized 1–2 μm grains in the TiCl4-derived product and 10–20 μm in the Ti(O-i-C3H7)4-derived TiN. The electric resisitivity and Vickers micro-hardness of the TiN ceramics was also measured.  相似文献   

20.
Dense, crack-free, and uniform La2Mo2− x W x O9 ( x =0, 0.1, and 0.2) nanocrystalline films were successfully synthesized on poly-alumina substrates via a modified sol–gel method, with inorganic salt of La(NO3)3·6H2O, (NH4)6Mo7O24·4H2O, and (NH4)6H2W12O24 as precursors. Pure La2Mo2O9 phase was confirmed by X-ray diffractometer when the annealing temperature was >500°C. The average grain size of the La2Mo2− x W x O9 films is in the range of 90–400 nm, depending upon the conditions of thermal treatment, and the thickness of films can reach 1 μm by repetitive spin-coating. The electrical conductivity increases with decreasing grain size and reaches 0.074 S/cm at 600°C in the film with a grain size of 90 nm, which is one order of magnitude higher than that in the corresponding bulk materials. W-doping can suppress the phase transition that occurs at 580°C in pure La2Mo2O9 and enhance the low-temperature ionic conductivity. Furthermore, the activation energy of conductivity in the nanocrystalline La2Mo2O9 films decreases to about 0.6 eV in comparison with 1.0 eV in the bulk ones, which implies that the grain resistance prevails in the total resistance, when grain size reduces to nanometer domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号