首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Q235B钢(/%:0.14~0.17C,0.30~0.60Mn,0.010~0.040Als)和Q345B钢(/%:0.15~0.18C,1.30~1.60Mn,0.010~0.040Als)100 mm厚板的生产流程为铁水预处理-120 t转炉-LF-200 mm板坯连铸-轧制工艺。通过分析得出中厚板表面纵裂纹源于铸坯裂纹。通过保护渣碱度由1.16提高至1.26,1300℃黏度由0.80Pa·s提高至0.97 Pa·s,软搅拌时间不低于10 min,拉速控制在1.0 m/min左右,液面上下波动≤5 mm,保持结晶器锥度9.0 mm,钢水过热度20~25℃,二冷水为0.662 L/kg等工艺措施,使Q235B和Q345B钢中厚板纵裂率由2.17%下降至1.08%,板材综合合格率由原94.78%提高到98.16%。  相似文献   

2.
通过生产试验,对Q235中板表面纵向裂纹进行检测和分析。确认了板坯原始裂纹是造成中板边部纵向裂纹的根源。经过对板坯连铸工艺调整和技术攻关,使裂纹缺陷得到有效控制,板坯裂纹缺陷比例由5.3%降到1.4%。  相似文献   

3.
热轧Q235B钢板表层氧化铁皮缺陷出现频次较高,利用光学显微镜和扫描电镜对表面氧化铁皮的厚度、结构以及成分进行了测量,结果表明,表面氧化铁皮的除不尽主要因为基底-氧化铁皮界面上生成了铁橄榄石(2FeO.SiO2或Fe2SiO4)。此外,在界面附近同时还发现了Mn和Cr的内氧化物。  相似文献   

4.
Q235B 薄板坯高温塑性的研究   总被引:1,自引:0,他引:1  
根据Gleeble1500热/应变模拟试验机测试的CSP薄板坯连铸工艺生产的成分(%)为0.16~0.20C,0.020~0.060Alt Q235B钢的70 mm ×1 500 mm薄板坯600~1400℃热塑性曲线,得出连铸坯第Ⅲ脆性区为700~900℃,如在此温度范围矫直,铸坯易产生裂纹。通过扫描电镜分析断口形貌和电子探针的成分分析,得出形变诱导铁素体呈网状析出和奥氏体在低温区域析出氮化物(AlN)导致铸坯脆化。  相似文献   

5.
Q235B和Q345B钢CSP铸坯纵裂纹的控制实践   总被引:1,自引:0,他引:1       下载免费PDF全文
酒钢Q235B(0.18%C)和Q345B(0.17%C)钢CSP工艺生产的68 mm×1 600 mm铸坯的纵裂纹主要出现在炉次间的第一块铸坯,裂纹宽0.01~0.30 mm、深0.10 mm、长度≥50 mm。纵裂纹影响因素的分析结果表明,当[S]≥0.008%、钢水过热度≥40°、结晶器锥度≤4 mm时,保护渣碱度和粘度较低,以及结晶器钢板厚度≤12mm时,铸坯裂纹指数明显增加。通过控制[S]≤0.008%,钢液过热度30±5℃,结晶器液面波动±3 mm,Q235B钢裂纹发生率由2%降至0.36%,Q345B钢由5%降至0.98%。  相似文献   

6.
本文分析了三宝钢铁热卷厂带钢表面纵裂缺陷的原因,针对炼钢五厂板坯三角区裂纹缺陷情况,采取提高板坯C含量和锰硫比等手段,有效减少了板坯三角区裂纹缺陷,明显改善了带钢表面纵裂缺陷,起到了减少带钢质量废品的作用。  相似文献   

7.
谢集祥  罗钢  刘浏  汪成义 《特殊钢》2020,41(2):10-14
基于涟钢板坯连铸机结构参数和冷却条件,建立了Q235B 230 mm×1 280 mm板坯连铸过程凝固传热的数值模型,研究了铸坯温度分布和坯壳厚度变化规律以及过热度和拉速对铸坯温度和凝固末端位置的影响规律。得出:随过热度和拉速的增加,铸坯中心和角部温度整体呈升高趋势,在其它参数不变的条件下,过热度每升高10℃,铸坯凝固末端和液相消失位置分别后移约0.38 m和0.31 m;拉速每升高0.1 m/min,凝固末端和液相消失位置分别后移2.06 m和1.4 m。通过数值模拟研究,掌握了铸坯温度和凝固末端位置的变化规律。  相似文献   

8.
葛允宗  张本亮  陈正春  王辉 《宽厚板》2015,(2):23-25,29
通过对宁钢180 t转炉终渣碱度(R)、氧化性(Fe O)与脱磷率之间关系的研究,发现碱度与氧化性呈正相关关系,将终渣碱度控制在3.40~3.80区间时,能够同时保证(Fe O)≤20%,脱磷率85.5%。此外,基于降低转炉冶炼辅料消耗的思路,对转炉终渣(Mg O)含量和炉衬维护进行了分析,认为将终渣(Mg O)含量控制在8.0%~8.5%能够满足生产需求。  相似文献   

9.
通过对存在表面裂纹的Q235D圆钢试样进行金相观察检验、分析,找出其裂纹缺陷的形成机理和来源,并提出改进措施。  相似文献   

10.
2011年初,临钢生产的12~40 mm厚钢板在冷弯时发生开裂现象.在开裂部位取样分析发现钢板开裂主要原因是钢中存在带状偏析和硫化物、硅酸盐夹杂过多阻断了钢基体的连续性,导致受力断裂.通过采取适当措施可以减少夹杂物的产生.  相似文献   

11.
利用光学显微镜、扫描电镜分析了Q235B中厚板的表面孔洞缺陷,认为该缺陷是皮下气泡,孔洞周围有较大的夹杂物。Q235B中厚板表面产生皮下气泡的原因是氩气流量不合理,通过调整结晶器流场、降低氩气流量,Q235B中厚板的孔洞缺陷大幅降低,产品质量明显提高。  相似文献   

12.
针对包晶钢连铸生产时易出现表面纵裂这一问题,结合现场生产实际情况,通过对生产数据的统计,详细分析了钢水成分、结晶器水冷却强度、浸入式水口插入深度、保护渣、拉速等对连铸板坯表面纵裂纹产生的影响,并提出相应的解决办法,使板坯表面纵裂纹的发生控制在0.05%以下,提高板坯表面质量。  相似文献   

13.
中厚钢板表面缺陷形成原因分析   总被引:1,自引:0,他引:1  
利用金相显微镜和扫描电能谱仪对武钢轧板厂近期生产的一批钢板的表面缺陷进行了分析,分析结果表明,这种表面缺陷是由复合保护渣物理性能不合格而引起的皮下气泡。  相似文献   

14.
针对延伸率低的Q235B中板,通过对拉伸试样的化学成分、断口、非金属夹杂物和金相组织等理化检验,分析了造成试样层状断口、中板延伸率低的原因,并提出了一些对策。  相似文献   

15.
在S55C热轧钢板日常检验中发现表面存在线状缺陷;从缺陷处取样,利用光学显微镜、扫描电镜和能谱对钢板表面线状缺陷的形成原因进行分析。结果表明,其主要原因是由于连铸坯表面存在较深的角横裂纹,在随后的轧制过程中该缺陷无法轧合而逐步扩展,形成表面线状缺陷。  相似文献   

16.
陈红  陈伟  吴光耀  曹重 《四川冶金》2013,35(1):46-51
国内某钢厂Q235热轧板带生产过程中出现少量孔洞缺陷,利用水模试验研究了Q235钢坯浇注过程拉速、水口插入深度及吹气量对结晶器内气泡分布的影响,采用金相检验、能谱分析方法对热轧板带孔洞缺陷显微组织及夹杂物进行了分析,同时对热轧板带孔洞缺陷生产工艺进行了调查。结果表明:连铸工艺参数控制不合理、熔炼样S含量偏高导致铸坯边部产生表层气孔、中部产生较严重的硫偏析,进而使钢板中部形成大量的条带状硫化物特别是低熔点FeS的大量生成导致了Q235热轧板带孔洞缺陷的产生。针对缺陷成因对炼钢生产工艺进行了优化改进,热轧板带孔洞缺陷基本得到了消除。  相似文献   

17.
分析了16Mn钢板及其与Q235钢板的焊接性能、异种金属焊接的特点、产生焊接缺陷的原因,从选材和焊接工艺上找出了控制焊接缺陷的方法。  相似文献   

18.
热轧钢板表面红色氧化铁皮缺陷成因分析   总被引:1,自引:0,他引:1  
红色氧化铁皮缺陷(俗称红锈),是由于Fe充分氧化成Fe_2O_3的结果,该缺陷在硅含量较高的钢中尤为突出,针对热轧钢板的红色氧化铁皮缺陷的成因进行了研究,采用金相显微镜、扫描电镜及XRD等分析手段进行了分析,提出了针对高硅钢红色氧化铁皮缺陷的加热和热轧工艺制度,有效改善了热轧钢板表面质量。  相似文献   

19.
分析了Q235B中厚板延伸率合格与不合格试样拉伸断口的形貌,用金相显微镜对试样中的夹杂物种类、级别及金相组织进行了定性分析和评级,用扫描电镜对夹杂物进行了定量分析,认为Q235B中厚板延伸率不合格的主要原因是钢中含有较多的夹杂物和带状组织。改进炼钢和轧钢工艺后,2011年Q235B中厚板的延伸不合格率由原来的9%降至1%,可创效益120万元。  相似文献   

20.
针对Q345B钢延伸率不合格的问题,分析了该钢种同浇次铸坯变形前的低倍组织、断口夹杂物、金相组织、裂纹形貌及其能谱,认为造成Q345B钢中厚板拉伸性能不合格的原因是钢中存在MnS夹杂.通过分析夹杂物的产生原因,提出了改进措施,大幅度减少了中厚板拉伸性能不合格的状况,提高了板材的产品质量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号