首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为提高移动终端任务分配效率,降低计算能量损耗,提出基于粒子群算法的移动边缘计算任务分配方法。通过构建异构网络获取完整的需要分配的任务,明确任务分配时所需的特定条件,即分配消耗和时延等。将分配任务转化成寻找分配结果的最优解,构建最优解模型,利用粒子群算法对模型实施求解,经过不断迭代和更新,生成最优边缘计算任务的分配结果。实验结果表明,粒子群方法在分配任务数量为20~100之间时计算时间在1 s~3.3 s;当任务数量为100时,本文方法能耗仅为4107 J;粒子群方法在任务达到率达到100%时,其时延仅为12.5 ms;其任务分配计算时间短、能量消耗小和数据传输的时延短,能较好地满足实际应用需要。  相似文献   

2.
在一组相同处理器上调度带有通信延迟的任务图以实现其最短的执行时间,这在并行计算的调度理论和实践中具有重要的意义。针对具有通信延迟的任务图调度问题,提出一种基于可满足性模理论(SMT)的改进SMT方法。首先,将处理器映射约束和任务执行顺序等约束条件进行编码,将任务图调度问题转化为SMT问题;然后,调用SMT求解器对可行解空间进行搜索,以确定问题最优解。在约束编码阶段,使用整型变量表示任务和处理器的映射关系,从而降低处理器约束编码的复杂程度;在求解器调用阶段,通过添加独立任务的约束条件减小求解器的搜索空间,进一步提升最优解的查找效率。实验结果表明,与原始SMT方法相比,改进SMT方法在20 s和1 min超时实验中的平均求解时间分别减少了65.9%与53.8%,并且在处理器数量较多时取得了更大的效率优势。改进的SMT方法可以有效求解带通信延迟的任务图调度问题,尤其适用于处理器数量较多的调度场景。  相似文献   

3.
A growing number of data- and compute-intensive experiments have been modeled as scientific workflows in the last decade. Meanwhile, clouds have emerged as a prominent environment to execute this type of workflows. In this scenario, the investigation of workflow scheduling strategies, aiming at reducing its execution times, became a top priority and a very popular research field. However, few work consider the problem of data file assignment when solving the task scheduling problem. Usually, a workflow is represented by a graph where nodes represent tasks and the scheduling problem consists in allocating tasks to machines to be executed at a predefined time aiming at reducing the makespan of the whole workflow. In this article, we show that the scheduling of scientific workflows can be improved when both task scheduling and the data file assignment problems are treated together. Thus, we propose a new workflow representation, where nodes of the workflow graph represent either tasks or data files, and define the Task Scheduling and Data Assignment Problem (TaSDAP), considering this new model. We formulated this problem as an integer programming problem. Moreover, a hybrid evolutionary algorithm for solving it, named HEA-TaSDAP, is also introduced. To evaluate our approach we conducted two types of experiments: theoretical and practical ones. At first, we compared HEA-TaSDAP with the solutions produced by the mathematical formulation and by other works from related literature. Then, we considered real executions in Amazon EC2 cloud using a real scientific workflow use case (SciPhy for phylogenetic analyses). In all experiments, HEA-TaSDAP outperformed the other classical approaches from the related literature, such as Min–Min and HEFT.  相似文献   

4.
This paper considers the problem of assigning the tasks of a distributed application to the processors of a distributed system such that the sum of execution and communication costs is minimized. Previous work has shown this problem to be tractable for a system of two processors or a linear array of N processors, and for distributed programs of serial parallel structures. Here we focus on the assignment problem on a homogeneous network, which is composed of N functionally-identical processors, each with its own memory. Some processors in the network may have unique resources, such as data files or certain peripheral devices. Certain tasks may have to use these unique resources; they are called attached tasks. The tasks of a distributed program should therefore be assigned so as to make use of specific resources located at certain processors in the network while minimizing the amount of interprocessor communication. The assignment problem in such a homogeneous network is known to be NP-hard even for N=3, thus making it intractable for a network with a medium to large number of processors. We therefore focus on task assignment in general array networks, such as linear arrays, meshes, hypercubes, and trees. We first develop a modeling technique that transforms the assignment problem in an array or tree into a minimum-cut maximum-flow problem. The assignment problem is then solved for a general array or tree network in polynomial time  相似文献   

5.
The current trends in the robotics field have led to the development of large-scale multiple robot systems, and they are deployed for complex missions. The robots in the system can communicate and interact with each other for resource sharing and task processing. Many of such systems fail despite the availability of necessary resources. The major reason for this is their poor coordination mechanism. Task planning, which involves task decomposition and task allocation, is paramount in the design of coordination and cooperation strategies of multiple robot systems. Task allocation mechanism allocates the task in a mission to the robots by maximizing the overall expected performance, and thereby reducing the total allocation cost for the team. In this paper, we formulate a heuristic search-based task allocation algorithm for the task processing in heterogeneous multiple robot system, by maximizing the efficiency in terms of both communication and processing cost. We assume a set of decomposed tasks of a mission, which needs to be allocated to the robots. The near-optimal allocation schemes are found using the proposed peer structure algorithm for the given problem, where the number of the tasks is more than the robots present in the system. The cost function is the summation of static overhead cost of robots, assignment cost, and the communication cost between the dependent tasks, if they are assigned to different robots. Experiments are performed to verify the effectiveness of the algorithm by comparing it with the existing methods in terms of computational time and quality of solution. The experimental results show that the proposed algorithm performs the best under different problem scales. This proves that the algorithm can be scaled for larger system and it can work for dynamic multiple robot system.  相似文献   

6.
In a distributed system, a number of application tasks may need to be assigned to different processors such that the system cost is minimized and the constraints with limited resource are satisfied. Most of the existing formulations for this problem have been found to be NP-complete, and thus finding the exact solutions is computationally intractable for large-scaled problems. This paper presents a hybrid particle swarm optimization algorithm for finding the near optimal task assignment with reasonable time. The experimental results manifest that the proposed method is more effective and efficient than a genetic algorithm. Also, our method converges at a fast rate and is suited to large-scaled task assignment problems.  相似文献   

7.
This paper presents a generalization to classical scheduling theory by removing the restriction that only one processor can work on a given task at a particular time. Instead, it is assumed that each task can be allocated any number of identical processors from one to the maximum number available, with each task's completion time being a function of the number of processors allocated. Tasks may be started any time, but once started, a task must not have its processor allocation altered or be preempted. Two objective functions are considered: minimizing the overall completion time for the tasks (make-span) and minimizing a weighted sum of the task completion times (weighted response). Both are considered subject to a constraint on the total number of processors available. Suboptimal algorithms are developed for both of these NP-hard problems using Lagrangian relaxation, and their performances are analyzed through extensive simulations. Duality gaps for all problems tested ranged from under 1% to 92%, depending more on the problem size than the specific problem.  相似文献   

8.
We consider the problem of scheduling an application on a computing system consisting of heterogeneous processors and data repositories. The application consists of a large number of file-sharing otherwise independent tasks. The files initially reside on the repositories. The processors and the repositories are connected through a heterogeneous interconnection network. Our aim is to assign the tasks to the processors, to schedule the file transfers from the repositories, and to schedule the executions of tasks on each processor in such a way that the turnaround time is minimized. We propose a heuristic composed of three phases: initial task assignment, task assignment refinement, and execution ordering. We experimentally compare the proposed heuristics with three well-known heuristics on a large number of problem instances. The proposed heuristic runs considerably faster than the existing heuristics and obtains 10–14% better turnaround times than the best of the three existing heuristics.  相似文献   

9.
The task assignment problem is one of assigning tasks of a parallel program among the processors of a distributed computing system in order to reduce the job turnaround time and to increase the throughput of the system. Since the task assignment problem is known to be NP-complete except in a few special situations, satisfactory suboptimal solutions obtainable in a reasonable amount of computation time are generally sought. In the paper we introduce a technique based on the problem-space genetic algorithm (PSGA) for the static task assignment problem in both homogeneous and heterogeneous distributed computing systems to reduce the task turnaround time and to increase the throughput of the system by properly balancing the load and reducing the interprocessor communication time among processors. The PSGA based approach combines the power of genetic algorithms, a global search method, with a simple and fast problem-specific heuristic to search a large solution space efficiently and effectively to find the best possible solution in an acceptable CPU time. Experimental results on test examples from the literature show considerable improvements in both the assignment cost and the CPU times over the previous work. The proposed scheme is also applied to a digital signal processing (DSP) system consisting of 119 tasks to illustrate its balancing properties and computational advantage on a large system. The proposed scheme offers 12–30% improvement in the assignment cost as compared to the previous best known results for the DSP example.  相似文献   

10.
We address a bilevel decomposition algorithm for solving the simultaneous scheduling and conflict-free routing problems for automated guided vehicles. The overall objective is to minimize the total weighted tardiness of the set of jobs related to these tasks. A mixed integer formulation is decomposed into two levels: the upper level master problem of task assignment and scheduling; and the lower level routing subproblem. The master problem is solved by using Lagrangian relaxation and a lower bound is obtained. Either the solution turns out to be feasible for the lower level or a feasible solution for the problem is constructed, and an upper bound is obtained. If the convergence is not satisfied, cuts are generated to exclude previous feasible solutions before solving the master problem again. Two types of cuts are proposed to reduce the duality gap. The effectiveness of the proposed method is investigated from computational experiments.  相似文献   

11.
This paper investigates the problem of allocating parallel application tasks to processors in heterogeneous distributed computing systems with the goal of maximizing the system reliability. The problem of finding an optimal task allocation for more than three processors is known to be NP-hard in the strong sense. To deal with this challenging problem, we propose a simple and effective iterative greedy algorithm to find the best possible solution within a reasonable amount of computation time. The algorithm first uses a constructive heuristic to obtain an initial assignment and iteratively improves it in a greedy way. We study the performance of the proposed algorithm over a wide range of parameters including problem size, the ratio of average communication time to average computation time, and task interaction density. The viability and effectiveness of our algorithm is demonstrated by comparing it with recently proposed task allocation algorithms for maximizing system reliability available in the literature.  相似文献   

12.
针对异构多核处理器间的任务调度问题,为了更好地发挥异构多核处理器间的平台优势,提出一种基于将有关联的且不在同一处理器上的任务进行复制的思想,从而使每个异构多核的处理器能独立执行任务,来减少不同处理器之间的通信开销,并且通过混合粒子群算法(HPSO)来调度异构多核处理器中的任务,避免由于当任意一个异构多核处理器由于任务分配过多而导致计算机不能及时且准确地得出结果.最后实验证明,对比传统的启发式分配方案和常见的遗传算法(GA),基于任务复制思想分配方案和混合粒子群算法(HPSO)具有更好的求解能力,并且可以提供执行时间更少的调度分配方案,具有较好的应用价值.  相似文献   

13.
Allocating hard real-time tasks: An NP-Hard problem made easy   总被引:4,自引:0,他引:4  
A distributed hard real time system can be composed from a number of communicating tasks. One of the difficulties with building such systems is the problem of where to place the tasks. In general there are P T ways of allocating T tasks to P processors, and the problem of finding an optimal feasible allocation (where all tasks meet physical and timing constraints) is known to be NP-Hard. This paper describes an approach to solving the task allocation problem using a technique known as simulated annealing. It also defines a distributed hard real-time architecture and presents new analysis which enables timing requirements to be guaranteed.This work was supported in part by British Aerospace (Commercial Aircraft) Ltd, and the UK Department of Trade and Industry.  相似文献   

14.
Allocating fragments in distributed databases   总被引:2,自引:0,他引:2  
For a distributed database system to function efficiently, the fragments of the database need to be located, judiciously at various sites across the relevant communications network. The problem of allocating these fragments to the most appropriate sites is a difficult one to solve, however, with most approaches available relying on heuristic techniques. Optimal approaches are usually based on mathematical programming, and formulations available for this problem are based on the linearization of nonlinear binary integer programs and have been observed to be ineffective except on very small problems. This paper presents new integer programming formulations for the nonredundant version of the fragment allocation problem. This formulation is extended to address problems which have both storage and processing capacity constraints; the approach is observed to be particularly effective in the presence of capacity restrictions. Extensive computational tests conducted over a variety of parameter values indicate that the reformulations are very effective even on relatively large problems, thereby reducing the need for heuristic approaches.  相似文献   

15.
We consider a generalization of the classical frequency assignment problem. The generalization arises when frequency hopping is used in a cellular network. The planning problem concerns assigning lists of frequencies to blocks of transceivers, such that the total interference is minimized. This problem is considerably more difficult than the classical frequency assignment problem, because of the large number of possible frequency lists. We provide the technical background that motivates our study, and present a mathematical model which includes the classical frequency assignment problem as a special case. We describe a simulated annealing algorithm. The algorithm explores the solution space by solving an integer program in each iteration. We report computational results for real-life and synthesized networks.  相似文献   

16.
分布式实时系统中的预测调度算法   总被引:8,自引:0,他引:8  
许建峰  朱晴波  胡宁  谢立 《软件学报》2000,11(1):95-103
对于分布式实时系统中的周期性任务,人们提出了一系列静态分配调度算法,有效地解决了各种特定条件下的任务分配和调度问题.这些算法的主要特点是,它们均要求被调度任务的特征参数为已知条件.然而在很多实时系统中,周期性任务的运行时间或任务数量常常是一些具有一定规律的随机过程,因而上述静态算法的效能将受到限制.在分析了特定应用背景中的处理流程之后,抽象得到两类随机任务模型,针对这两类模型介绍了在分布式实时系统中已经得到应用的静态分配调度算法SAA(static allocation algorithms),进而提出了多任务分配调度的预测算法PAA(predicting allocation algorithm).它根据周期性任务执行时间或子任务数量的统计特性,实现任务参量的合理预测和多任务的动态调度,以提高系统的实时性能.仿真结果表明,对于两类任务模型,PAA算法与SAA算法相比,在任务完成时间、负载均衡度、系统响应时间及任务夭折率等多方面均有显著改善.  相似文献   

17.
The problem of distributing tasks to processors in a distributed computing system is addressed. A task should be assigned to a processor whose capabilities are most appropriate for the execution of that task and excessive interprocessor communication is avoided. A simple algorithm for task allocation is presented. The execution costs and communication costs of the tasks are represented by arrays. A task is either assigned to a processor or fused with another task using a simple criterion. The execution and communication costs are then modified suitably. The process continues until all the tasks are assigned to processors. This algorithm also facilitates incorporation of various system constraints. It is applicable to random program structures and to a system containing any number of processors.  相似文献   

18.
An efficient method based on particle swarm optimization (PSO) is developed to solve the Multiprocessor Task Scheduling Problem (MPTSP). To efficiently execute parallelized programs on a multiprocessor environment, a scheduling problem must be solved to determine the assignment of tasks to the processors, the execution order of the tasks, and the starting time of each task, such that some optimality criteria are met. The scheduling problem is known as an NP-complete problem even when the target processors are fully connected and no communication delay is considered among the tasks in the task graph. The complexity of the scheduling problem depends on the number of tasks (N), the number of processors (M), the task processing time and the precedence constraints. The Directed Acyclic Graph (DAG) was exploited to represent the tasks and their precedence constraints. The proposed algorithm was compared with the Genetic Algorithm (GA) and the Duplication Scheduling Heuristic (DSH). We also provide a systematic investigation on the effect of varying problem settings. The results show that the proposed algorithm could not outperform the DSH while it could outperform the GA in some cases.  相似文献   

19.
Optimized task scheduling is one of the most important challenges to achieve high performance in multiprocessor environments such as parallel and distributed systems. Most introduced task-scheduling algorithms are based on the so-called list scheduling technique. The basic idea behind list scheduling is to prepare a sequence of nodes in the form of a list for scheduling by assigning them some priority measurements, and then repeatedly removing the node with the highest priority from the list and allocating it to the processor providing the earliest start time (EST). Therefore, it can be inferred that the makespans obtained are dominated by two major factors: (1) which order of tasks should be selected (sequence subproblem); (2) how the selected order should be assigned to the processors (assignment subproblem). A number of good approaches for overcoming the task sequence dilemma have been proposed in the literature, while the task assignment problem has not been studied much. The results of this study prove that assigning tasks to the processors using the traditional EST method is not optimum; in addition, a novel approach based on the ant colony optimization algorithm is introduced, which can find far better solutions.  相似文献   

20.
A common problem in production planning is to sequence a series of tasks so as to meet demand while satisfying operational constraints. This problem can be challenging to solve in its own right. It becomes even more challenging when higher-level decisions are also taken into account. For example, determining which shifts to operate clearly impacts how tasks are then scheduled; additionally, reducing the number of shifts that must be operated can have great cost benefits. Integrating the shift-selection and task-sequencing decisions can greatly impact tractability, however, traditional mathematical programming approaches often failing to converge in reasonable run times. Instead, we develop an approach that embeds mathematical programming, as a mechanism for solving simpler feasibility problems, within a larger search-based algorithm that leverages dominance to achieve substantial pruning. In this paper, we introduce the Shift-Selection and Task Sequencing problem (SS-TS), develop the Test-and-Prune algorithm (T&P), and present computational experiments based on a real-world problem in automotive stamping to demonstrate its effectiveness. In particular, we are able to solve to provable optimality, in very short run times, a number of problem instances that could not be solved through traditional integer programming methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号