首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aquatic nontarget organisms are typically exposed to sequential pulses of contaminants with fluctuating concentrations. We use the semimechanistic threshold damage model (TDM) to simulate survival of the aquatic invertebrate Gammarus pulex after sequential pulsed exposure to carbaryl and compare itto a simpler model based on time-weighted averages (TWA). The TDM is a process-based model and we demonstrate how to parametrize it with data from an uptake and elimination experimenttogether with data from a survival experiment with sequential pulses. The performance of the two models is compared by the fit to the first survival experiment and the simulation of another, independent survival experiment with different exposure patterns. Measured internal concentrations in the first survival experiment are used to evaluate the toxicokinetic submodel of the TDM. The TDM outperforms the TWA model, facilitates understanding of the underlying ecotoxicological processes, permits calculation of recovery times (3, 15, and 25 days for pentachlorophenol, carbaryl and chlorpyrifos respectively) and enables us to predict the effects of long-term exposure patterns with sequential pulses or fluctuating concentrations. We compare the parameters of the TDM for carbaryl, pentachlorophenol and chlorpyrifos and discuss implications for ecotoxicology and risk assessment.  相似文献   

2.
Aquatic risk assessment can be improved if we are able to quantitatively predict the effects resulting from sequential pulsed exposure to multiple compounds. We evaluate two modeling approaches, both extended to suit multiple compounds, the semi-mechanistic threshold damage model (TDM), and a model based on time-weighted averages (TWA). The TDM predicts that recovery of damage to Gammarus pulex from exposure to chlorpyrifos takes longer than that from exposure to carbaryl and consequently that the sequence of exposure matters. We measured survival of the freshwater invertebrate Gammarus pulex after sequential pulsed exposure to carbaryl and chlorpyrifos. Two groups of organisms were exposed to a first pulse of either carbaryl or chlorpyrifos for 1 day and then, after a recovery period of two weeks, to a second pulse with the other compound. The comparison of mortalities caused by each pulse, as well as combined mortalities in both treatments, show that the sequence of exposure to pulses of contaminants does indeed matter. Previous exposure to chlorpyrifos leads to significantly increased mortality from subsequent pulses of carbaryl, but not the other way round. The TDM facilitates a process-based ecotoxicological explanation by simulating the recovery dynamics and outperforms the TWA model.  相似文献   

3.
A model representing the bioaccumulation of persistent organic pollutants (POPs) in arctic terrestrial mammalian food-chains is developed, parametrized, tested, and analyzed. The model predicts concentrations of POPs in lichen, caribou (Rangifer tarandus), and wolf (Canis lupus) food-chains of Canada's central and western arctic region from measured concentrations in air and snowpack meltwater. The model accounts for temporal and seasonal variation in diet composition, life-stage, body weight, and fat content over the life-span of the animal. Model predicted concentrations of 25 organic chemicals forecasted for caribou and wolves from Cambridge Bay (69 degrees 07' N 105 degrees 03' W), Inuvik (68 degrees 18' N 133 degrees 29' W) and Bathurst Inlet (64 degrees 15' N 113 degrees 07' W) are shown to be in good agreement with the observed data. The model illustrates a strong relationship between biomagnification factors and chemical K(OA) and illustrates the effect of age, sex, and temperature on POPs bioaccumulation. Model results show that POPs with K(OA)s < 10(5) do not biomagnify in arctic terrestrial food-chains, while substances that exhibit log K(OA)s > 5 and also exhibit a log K(OW) > 2, show significant bioaccumulation in arctic terrestrial food-chains. The model shows that persistent low K(OW) (K(OW)s < 10(5)) but high K(OA) substances such as beta-HCH, 1,2,4,5 tetrachlorobenzene, and beta-endosulfan biomagnify in terrestrial mammals.  相似文献   

4.
5.
6.
A model was used to explore the influence of physicalchemical properties on the potential of organic chemicals to bioaccumulate in humans. ACC-HUMAN, a model of organic chemical bioaccumulation through the agricultural and aquatic food chains to humans, was linked to a level I unit world model of chemical fate in the physical environment and parametrized for conditions in southern Sweden. Hypothetical, fully persistent chemicals with varying physical-chemical properties were distributed in the environment, and their bioaccumulation to humans was calculated. The results were evaluated using the environmental bioaccumulation potential (EBAP), defined as the quotient of the chemical quantity in a human divided by the quantity of chemical in the whole environment. Since the latter is closely related to emissions, EBAP is potentially a more useful tool for comparative risk assessment of chemicals than currently used medium-specific measures such as the fish-water bioaccumulation factor. A high environmental bioaccumulation potential, defined as > 10% of the maximum EBAP, was found for chemicals with 2 < log KOW < 11 and 6 < log KOA < 12. While these chemical partitioning properties clearly influenced bioaccumulation at each trophic level, these effects tended to equalize over the food web. The fact that the transfer from the environment as a whole to humans was quite uniform over a large chemical partitioning space suggests that these partitioning properties are relatively unimportant determinants of human exposure compared to other factors such as the substance's persistence in the environment and in the food web.  相似文献   

7.
8.
Model intercomparison for the uptake of organic chemicals by plants   总被引:1,自引:0,他引:1  
Currently, a variety of models are available for predicting the uptake, translocation, and elimination of organic contaminants by plants. These models range from simple deterministic risk assessment screening tools to more complex models that consider physical, chemical, and biological processes in a mechanistic manner. This study evaluates the performance of a range of such models and model types against experimental data sets. Three dynamic, three regression-based, and three steady-state and equilibrium models have been selected for evaluation. These models differ in terms of their scope, methodological approach, and complexity. Data from nine published experiments were used to create scenarios to test model performance. These experiments consider plant contamination via both soil and aerial exposure pathways. A total of 19 different organic chemicals were used in the experiments along with 7 different plant species. Model predictions of chemical concentrations in the relevant plant compartments were compared with the experimentally recorded values. The results indicate that dynamic models offer performance advantages for acute exposure durations and for rapidly changing environmental media. Equilibrium/steady-state and regression-based models perform better for chronic exposure durations, where stable conditions are more likely to exist. The selection of an appropriate plant uptake model will therefore be dependent on the requirements of the assessment, the nature of the environmental media, and the duration of the source term. The results generated by the regression-based models suggest that in their current form these models are unsuitable for evaluating the uptake of organic chemicals from the air into plants.  相似文献   

9.
Plant uptake of non ionic organic chemicals   总被引:15,自引:0,他引:15  
Plant uptake of organic chemicals is an important process when considering the risks associated with land contamination, the role of vegetation in the global cycling of persistent organic pollutants, and the potential for industrial discharges to contaminate the food chain. There have been some significant advances in our understanding of the processes of plant uptake of organic chemicals in recent years; most notably there is now a better understanding of the air to plant transfer pathway, which may be significant for a number of industrial chemicals. This review identifies the key processes involved in the plant uptake of organic chemicals including those for which there is currently little information, e.g., plant lipid content and plant metabolism. One of the principal findings is that although a number of predictive models exist using established relationships, these require further validation if they are to be considered sufficiently robust for the purposes of contaminated land risk assessment or for prediction of the global cycling of persistent organic pollutants. Finally, a number of processes are identified which should be the focus of future research.  相似文献   

10.
11.
Mass balance models of chemical fate and transport can be applied in ecological risk assessments for quantitative estimation of concentrations in air, water, soil, and sediment. These concentrations can, in turn, be used to estimate organism exposures and ultimately internal tissue concentrations that can be compared to mode-of-action-based critical body residues that induce toxic effects. From this comparison, risks to the exposed organism can be evaluated. To demonstrate the use of fate models in ecological risk assessment, we combine the EQuilibrium Criterion (EQC) environmental fate model with a simple screening level biouptake model for three representative organisms: a bird, a mammal, and a fish. This effort yields estimates of internal body concentrations that can be compared with levels known to elicit toxic effects. As an illustration, we present an analysis of 24 hydrocarbon components of gasoline that differ in properties but are assumed to elicit toxicity by a common narcotic mode of action. Results demonstrate that differences in chemical properties and mode of entry into the environment lead to profound differences in the efficiency of transport from emission to target biota. We discussthe implications of these results and draw attention to the insights gained about regional fate and ecological risks associated with gasoline. This approach is suitable for assessing single chemicals or mixtures that have similar modes of action. We conclude that the model-based methodologies presented are widely applicable for screening level ecological risk assessments that support effective chemicals management.  相似文献   

12.
Vegetation plays a key role in the environmental fate of many organic chemicals, from pesticides applied to plants, to the air-vegetation exchange and global cycling of atmospheric organic contaminants. Our ability to locate such compounds in plants has traditionally relied on inferences being made from destructive chemical extraction techniques or methods with potential artifacts. Here, for the first time, two-photon excitation microscopy (TPEM) is coupled with plant autofluorescence to visualize and track trace levels of an organic contaminant in living plant tissue, without any form of sample modification or manipulation. Anthracene-a polynuclear aromatic hydrocarbon (PAH)-was selected for study in living maize (Zea mays) leaves. Anthracene was tracked over 96 h, where amounts as low as approximately 0.1-10 pg were visible, as it moved through the epicuticular wax and plant cuticle, and was observed reaching the cytoplasm of the epidermal cells. By this stage, anthracene was identifiable in five separate locations within the leaf: (1) as a thin (approximately 5 microm) diffuse layer, in the upper surface of the epicuticular wax; (2) as thick (approximately 28 microm) diffuse bands extending from the epicuticular wax through the cuticle, to the cell walls of the epidermal cells; (3) on the external surface of epidermal cell walls; (4) on the internal surface of epidermal cell walls; and (5) within the cytoplasm of the epidermal cells. This technique provides a powerful nonintrusive tool for visualizing and tracking the movement, storage locations, and degradation of organic chemicals within vegetation using only plant and compound autofluorescence. Many other applications are envisaged for TPEM, in visualizing organic chemicals within different matrixes.  相似文献   

13.
Experimental rats received T-2 toxin (0.063 mg/kg), deoxynivalenol (1.6 mg/kg) and aflatoxin B1 (0.008 mg/kg) during 6 months. Moderately manifest changes were detected in metabolic enzyme activity of foreign substances in the liver and small intestine mucosa. All mycotoxins induced weak hypocalcemia, while ionized calcium concentration in the blood serum decreased only after T-2 toxin administration that was attended by an increase of PTH level. Alkaline phosphatase activity and calcium transport in the small intestine were not significantly changed. Concentration of 25-OHD in the blood serum and 25-hydroxylase D3 activity in the liver decreased in rats given T-2 toxin. Formation of 1,25(OH)2D3 and 24,25(OH)2D3 in the kidneys was not significantly changed, while T-2 toxin inhibited regulatory changes in 1-hydroxylase 25-OHD3 activity in response to the action of PTH and adenylate cyclase activator forskolin. The results of the investigation have evidenced that calcium metabolism disorders during chronic action of mycotoxins could be partially associated with secondary vitamin D deficiency.  相似文献   

14.
Model simulations of the fate of numerous hypothetical substances in the global environment can provide considerable insight into how an organic chemical's degradability and partitioning properties influence its absolute and relative Arctic enrichment behavior, as quantified by the Arctic Contamination Potential. For substances that degrade faster in water than in soil, but are quite persistent in the atmosphere, highest Arctic contamination is expected to occur if the substances have intermediate volatility and high hydrophobicity. Organic substances that are degradable in the atmosphere can still accumulate in the Arctic if they are soluble and highly persistent in water. These latter substances, which reach the Arctic in the ocean, also show the highest potential for relative enrichment in the Arctic, i.e., high amounts in northern high latitudes relative to the amounts in the total global environment. Beyond a threshold persistence in surface media of the order of several months to a year, chemical degradability leads to further relative enrichment. This is because only chemicals that are sufficiently long-lived get transferred to polar regions and once there can persist longer than at lower latitudes. The model simulations can inform the search for new potential Arctic contaminants, and can highlight combinations of properties which should be avoided in high production volume chemicals with the potential for environmental release. Three categories of organic substances are singled out for troublesome combinations of persistence, distribution, and potential bioaccumulation characteristics, only one of which contains "classical" Arctic POPs. Examples of potential Arctic contaminants within each of these categories are named.  相似文献   

15.
16.
17.
Lipids have been considered as the predominant components for bioaccumulation of organic chemicals. However, differences in accumulation properties between different types of lipid (e.g., storage and membrane lipids) have rarely been considered. Moreover, in view of toxic effects on organisms, chemical accumulation specifically in biological membranes is of particular importance. In this review article, partition coefficients of 240 neutral organic compounds between liposomes (phospholipid membrane vesicles) and water (K(lipw)), reported in the literature or measured additionally for this work, were evaluated. Values of log K(lipw) and log K(ow) (octanol-water partition coefficients) differ by 0.4 on average. Polyparameter linear free energy relationships (PP-LFERs) can describe the log K(lipw) data even better (standard deviations = 0.28-0.31) than the log K(ow) model. Recent experimental data for highly hydrophobic compounds fit well to the PP-LFERs and do not indicate the existence of a previously postulated "hydrophobicity cutoff". Predictive approaches based only on the molecular structure (KOWWIN, SPARC, COSMOthermX, COSMOmic) were also evaluated for K(lipw) prediction. The PP-LFERs revealed that partition coefficients into membrane lipids can be two log units higher than those into storage lipids for H-bond donor compounds, suggesting that distinguishing between the two lipids is necessary to account for the bioaccumulation of these compounds, and that tissues rich in membrane lipids (e.g., kidneys, liver) instead of fat tissue can be the primary phase for accumulation.  相似文献   

18.
Quantification of chemical toxicity continues to be generally based on measured external concentrations. Yet, internal chemical concentrations have been suggested to be a more suitable parameter. To better understand the relationship between the external and internal concentrations of chemicals in fish, and to quantify internal concentrations, we compared three toxicokinetic (TK) models with each other and with literature data of measured concentrations of 39 chemicals. Two one-compartment models, together with the physiologically based toxicokinetic (PBTK) model, in which we improved the treatment of lipids, were used to predict concentrations of organic chemicals in two fish species: rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas). All models predicted the measured internal concentrations in fish within 1 order of magnitude for at least 68% of the chemicals. Furthermore, the PBTK model outperformed the one-compartment models with respect to simulating chemical concentrations in the whole body (at least 88% of internal concentrations were predicted within 1 order of magnitude using the PBTK model). All the models can be used to predict concentrations in different fish species without additional experiments. However, further development of TK models is required for polar, ionizable, and easily biotransformed compounds.  相似文献   

19.
Although organic acids represent < 0.5% of honey's constituents, they make important contributions to the organoleptic, physical, and chemical properties of honey. To date, approximately 30 nonaromatic organic acids have been identified in honey, but relatively little attention has been paid to these components. This article reviews the current literature related to the significance of nonaromatic organic acids in honey; it was written with a goal of attracting researchers to study these interesting honey components. Previous research contributions on nonaromatic organic acids in honey may be classified into five main areas: (i) the antibacterial activities of these acids, (ii) the antioxidant activities of these acids, (iii) the use of these acids as possible indicators of incipient fermentation, (iv) the use of these acids for treatment of Varroa infestation, and (v) the use of these acids as factors for the characterization of both botanical and geographical origins of honeys. We conclude that nonaromatic organic acids are of interest for diverse reasons and that there is a particular need for studies regarding their possible antibacterial and antioxidant activities.  相似文献   

20.
Adsorption of polar and nonpolar organic chemicals to carbon nanotubes   总被引:14,自引:0,他引:14  
Understanding adsorptive interactions between organic contaminants and carbon nanotubes is critical to both the environmental application of carbon nanotubes as special adsorbents and the assessment of the potential impact of carbon nanotubes on the fate and transport of organic contaminants in the environment. The adsorption of organic compounds with varied physical-chemical properties (hydrophobicity, polarity, electron polarizability, and size) to one single-walled carbon nanotube (SWNT) and two multiwalled carbon nanotubes (MWNTs) was evaluated. For a given carbon nanotube, the adsorption affinity correlated poorly with hydrophobicity but increased in the order of nonpolar aliphatic < nonpolar aromatics < nitroaromatics, and within the group of nitroaromatics, the adsorption affinity increased with the number of nitrofunctional groups. We propose that the strong adsorptive interaction between carbon nanotubes and nitroaromatics was due to the pi-pi electron-donor-acceptor (EDA) interaction between nitroaromatic molecules (electron acceptors) and the highly polarizable graphene sheets (electron donors) of carbon nanotubes. Additionally, we attribute the stronger adsorption of nonpolar aromatics compared to that of nonpolar aliphatics to the pi-electron coupling between the flat surfaces of both aromatic molecules and carbon nanotubes. For tetrachlorobenzene, the bulkiest adsorbate, adsorption affinity (on a unit surface area basis) to the SWNT was much stronger than to the two MWNTs, indicating a probable molecular sieving effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号