首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought Characterisation Based on Water Surplus Variability Index   总被引:2,自引:0,他引:2  
Drought assessment, characterisation and monitoring increasingly requires considering not only precipitation but also the other meteorological parameters such as an evapotranspiration. Thus, some new drought indices based on precipitation and evapotranspiration have been developed. This study introduces a new drought index named the water surplus variability index (WSVI). The procedure to estimate the index involves accumulation water surplus at different time scales. To approve the proposed procedure, the WSVI is compared with the standardized precipitation index (SPI), the reconnaissance drought index (RDI) and the standardized precipitation evapotranspiration index (SPEI) based on 1-, 3-, 6- and 12-month timescales using data from several weather stations located in regions with different aridity index. Near perfect agreement (d?~?1) between WSVI and SPI, RDI and SPEI was indicated in humid and sub-humid locations. The results also showed that the correlation coefficients between WSVI and SPI, RDI and SPEI were higher for semi-arid stations than for arid ones.  相似文献   

2.
Drought and wetness events were studied in the Northeast Algeria with SPI and RDI. The study area includes a variety of climatic conditions, ranging from humid in the North, close to the Mediterranean Sea, to arid in the South, near the Sahara Desert. SPI only uses precipitation data while RDI uses a ratio between precipitation and potential evapotranspiration (PET). The latter was computed with the Thornthwaite equation, thus using temperature data only. Monthly precipitation data were obtained from 123 rainfall stations and monthly temperature data were obtained from CFSR reanalysis gridded temperature data. Both data sets cover the period 1979–80 to 2013–14. Using ordinary kriging, the gridded temperature data was interpolated to all the locations having precipitation data, thus providing to compute SPI and RDI with the same observed rainfall data for the 3-, 6- and 12-month time scales. SPI and RDI were therefore compared at station level and results and have shown that both indices revealed more sensitive to drought when applied in the semi-arid and arid zones. Differently, more wetness events were detected by RDI in the more humid locations. Comparing both indices, they show a coherent and similar behavior, however RDI shows smaller differences among climate zones and time-scales, which is an advantage relative to the SPI and is likely due to including PET in RDI.  相似文献   

3.
Drought Monitoring by Reconnaissance Drought Index (RDI) in Iran   总被引:1,自引:0,他引:1  
Drought is one of the most important natural hazards in Iran and frequently affects a large number of people, causing tremendous economic losses, environmental damages and social hardships. Especially, drought has a strong impact on water resources in Iran. This situation has made more considerations toward the study and management of drought. The present study is focused on two important indices; SPI and RDI, for 3, 6, 9, 12, 18 and 24 months time scales in 40 meteorological synoptic stations in Iran. In the case of RDI computation, potential evapotranspiration was an important factor toward drought monitoring. So, evapotranspiration was calculated by Penman-Monteith equation. The correlation of RDI and SPI was also surveyed. Drought severity maps for SPI and RDI were also presented in the driest year (1999–2000). The present results have shown that the correlation of SPI and RDI was more considerable in the 3, 6 and 9 months than longer time scales. Furthermore, drought severity maps have shown that during 1999–2000, the central, eastern and south-eastern parts of Iran faced extremely dry conditions. While, according to SPI and RDI trends, other parts of the country suffered from severe drought. The SPI and RDI methods showed approximately similar results for the effect of drought on different regions of Iran. Since, RDI resolved more climatic parameters, such as evapotranspiration, into account which had an important role in water resource losses in the Iranian basins, it was worthwhile to consider RDI in drought monitoring in Iran, too.  相似文献   

4.
The spatial and temporal variability of droughts were studied for the Northeast Algeria using SPI and RDI computed with monthly precipitation data from 123 rainfall stations and CFSR reanalysis monthly temperature data covering the period 1979–80 to 2013–14. The gridded temperature data was interpolated to all the locations having precipitation data, thus providing to compute SPI and RDI with the time scales of 3-, 6- and 12-month with the same observed rainfall data. Spatial and temporal patterns of droughts were obtained using Principal Component Analysis in S-Mode with Varimax rotation applied to both SPI and RDI. For all time scales of both indices, two principal components were retained identifying two sub-regions that are similar and coherent for all SPI and RDI time scales. Both components explained more than 70% and 74% of drought spatial variability of SPI and RDI, respectively. The identified sub-regions are similar and coherent for all SPI and RDI time scales. The Modified Mann-Kendall test was used to assess trends of the RPC scores, which have shown non-significant trends for decreasing drought occurrence and severity in both identified drought sub-regions and all time scales. Both indices have shown a coherent and similar behavior, however with RDI likely showing to identify more severe and moderate droughts in the southern and more arid sub-region which may be due to its ability to consider influences of global warming. Results for RDI are quite uniform relative to time scales and show smaller differences among the various climates when compared with SPI. Further assessments covering the NW and NE of Algeria using longer time series should be performed to better understand the behavior of both indices.  相似文献   

5.
Nowadays human beings are facing many environmental challenges because of frequently occurring drought hazards. Several adverse impacts of drought hazard are continued in many parts of the world. Drought has a substantial influence on water resources and irrigation. It may effect on the country’s environment, communities, and industries. Therefore, it is important to improve drought monitoring system. In this paper, we proposed a novel method – Standardized Precipitation Temperature Index (SPTI) for drought monitoring that utilize the regional tempreature. We compared the performance of our proposed drought index – SPTI with commonly used drought indices (i.e., Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI)) for 17 meteorological stations of Khyber Pakhtunkhwa (KPK) province (Pakistan) that have both extreme (arid and humid) climatic environment. We found that SPTI is strongly correlated with SPI and performed better than SPEI in low temperature regions for drought monitoring. In summary, SPTI is recommended for detecting and monitoring the drought conditions over different time scales.  相似文献   

6.
Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI)   总被引:15,自引:7,他引:8  
Regional drought assessment is conventionally based on drought indices for the identification of drought intensity, duration and areal extent. In this study, a new index, the Reconnaissance Drought Index (RDI) is proposed together with the well known Standardized Precipitation Index (SPI) and the method of deciles. The new index exhibits significant advantages over the other indices by including apart from precipitation, an additional meteorological parameter, the potential evapotranspiration. The drought assessment is achieved using the above indices in two river basins, namely Mornos and Nestos basins in Greece. It is concluded that although the RDI generally responds in a similar fashion to the SPI (and to a lesser extent to the deciles), it is more sensitive and suitable in cases of a changing environment.  相似文献   

7.
Drought is known as one of the main natural hazards especially in arid and semi-arid regions where there are considerable issues in regard to water resources management. Also, climate changes has been introduced as a global concern and therefore, under conditions of climate change and global warming, the investigation of drought severity trend in regions such as Iran which is mainly covered by arid and semi-arid climate conditions is in the primary of importance. Therefore, in this study, based on the application of Reconnaissance Drought Index (RDI) for assessment drought severities, and also the implementation of non-parametric Mann- Kendall statistics and Sen’s slope estimator, the trends in different time series of RDI (3, 6, 9, 12, 18 and 24 monthly time series) were investigated. Results indicated the frequent decreasing trends in RDI time series particularly for long term time series (12, 18 and 24 monthly time series) than short term ones. Decreasing trend in RDI time series means the increasing trend in drought severities. Since the water resources especially ground water in most cases are affected by long term droughts, therefore, increasing trend in drought intensities in long term ones can be a threat for water resources management in surveyed areas.  相似文献   

8.
Drought is considered as a major natural hazard/ disaster, affecting several sectors of the economy and the environment worldwide. Drought, a complex phenomenon can be characterised by its severity, duration, and areal extent. Drought indices for the characterization and the monitoring of drought simplify the complex climatic functions and can quantify climatic anomalies for their severity, duration, and frequency. With this as background drought indices were worked out for Madurai district of Tamil Nadu using DrinC (Drought Indices Calculator) software. DrinC calculates the drought indices viz., deciles, Standard Precipitation Index (SPI), Reconnaissance Drought Index (RDI), Streamflow Drought Index (SDI) by providing a simple, though flexible interface by considering all the factors. The drought of 3, 6 and 9 months as time series can also be estimated. The results showed that drought index of Madurai region by decile method revealed that among the 100 years, 20 years were affected by drought and it is cyclic in nature and occurring almost every 3 to 7 years once repeatedly, except for some continuous period, i.e., 1923, 1924 and 1985, 1986, etc. During the last five decades, the incidence is higher with 13 events, whereas in the first five decades it was only 7. The SPI and RDI index also followed the similar trend of deciles. However, under SPI and RDI, the severely dry and extremely dry category was only seven years and all other drought years of deciles were moderately dry. Our study indicated that SPI is a better indicator than deciles since here severity can be understood. SDI did not follow the trend similar to SPI or RDI. Regression analysis showed that the SPI and RDI are significantly correlated and if 1st 3 months rainfall data is available one can predict yearly RDI drought index. The results demonstrated that these approaches could be useful for developing preparedness plan to combat the consequences of drought. Findings from such studies are useful tools for devising strategic preparedness plans to combat droughts and mitigate their effects on the activities in the various sectors of the economy.  相似文献   

9.
Effective drought prediction methods are essential for the mitigation of adverse effects of severe drought events. This study utilizes the Reconnaissance Drought Index, Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index to assess the occurrence of future drought events in the study area of the Heilongjiang province of China over a period of 2016–2099. The drought indices were computed from the meteorological data (temperature, precipitation) generated by the global climate model (HadCM3A2). Moreover, Mann-Kendall trend test was applied for the assessment of future climatic trends and detecting probable differences in the behaviour of various drought indices. Drought forecasting periods has been divided into three categories: the early phase (1916–2030), middle phase (2031–2060) and late phase (2061–2099). The occurrence of future droughts is also ranked according to their intensity (mild, moderate, severe and extreme drought). Based on the drought results, more number of drought events are expected to occur during 12-month drought analysis are, RDI during 2084–2098 (DD = 14, DS = ?1.38), SPEI during 2084–2098 (DD = 14, DS = ?1.33) and SPI during 2084–2095 (DD = 12, DS = ?1.19). The 1st and 2nd months of the years studied predicted a warming trend, while the 7th, 8th, and 9th months predicted a wetter trend. Finally, it was observed that RDI is more sensitive to drought and indicated a high percentage of years under severe and extreme drought conditions during the drought frequency analysis. Conclusively, this study provides a strategies for water resources management and monitoring of droughts, in which drought indices like RDI can play a central role.  相似文献   

10.
Abstract

A better knowledge of droughts is required to improve water management in water scarce areas. To appropriately cope with droughts, there is the need to adopt adequate concepts relative to droughts and water scarcity, to properly use drought indices that help characterize them, including ones relative to their severity, and to develop prediction tools that may be useful for early warning and that may reduce the respective lead time needed for appropriate response. In this paper, concepts relative to drought and other water scarcity regimes are discussed aiming both to distinguish droughts from other water scarcity regimes and to base a common understanding of the general characteristics of droughts as hazards and disasters. Three main drought indices are described aiming at appropriate characterization of droughts: the theory of runs, the Palmer Drought Severity Index (PDSI), and the Standardized Precipitation Index (SPI). Their application to local and regional droughts in the region of Alentejo, Portugal is presented focusing on the respective comparison and possible adequateness for drought monitoring. Results indicate some difficulties in using the theory of runs, particularly because it requires a subjective definition of thresholds in precipitation and does not provide a standardized classification of severity. Results show that draught characterization with the PDSI and the SPI produce coherent information, but the PDSI is limited relative to the SPI because it requires more data to perform a soil water balance while the SPI needs only precipitation data, which are more easily available in numerous locations. It is concluded that adopting the SPI is appropriate, but there is advantage in combining different indices to characterize droughts.  相似文献   

11.

Precise analysis of spatiotemporal trends of temperature, precipitation and meteorological droughts plays a key role in the sustainable management of water resources in the given region. This study first aims to detect the long-term climate (monthly/seasonally and annually) trends from the historical temperature and precipitation data series by applying Spearmen’s Rho and Mann-Kendall test at 5 % significant level. The measurements of both climate variables for a total period of 49 years (1965–2013) were collected from the 11 different meteorological stations located in the Songhua River basin of China. Secondly, the two well-known meteorological drought indices including the Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) were applied on normalize data to detect the drought hazards at 3, 6, 9 and 12 month time scale in the study area. The analysis of monthly precipitation showed significant (p < 0.05) increasing trends during the winter (November and December months) season. Similarly, the results of seasonal and annual air temperature showed a significant increase from 1 °C to 1.5 °C for the past 49 years in the basin. According to the Sen’s slope estimator, the rate of increment in seasonal temperature slope (0.26 °C/season) and precipitation (9.02 mm/season) were greater than annual air temperature (0.04 °C/year) and precipitation (1.36 mm/year). By comparing the results of SPI and RDI indices showed good performance at 9 (r = 0.96, p < 0.01) and 12 (r = 0.99, p < 0.01) month drought analysis. However, the yearly drought analysis at over all stations indicated that a 20 years were under dry conditions in entire study area during 49 years. We found the extreme dry and wet conditions in the study region were prevailing during the years of 2001 and 2007, and 1994 and 2013, respectively. Overall, the analysis and quantifications of this study provides a mechanism for the policy makers to mitigate the impact of extreme climate and drought conditions in order to improve local water resources management in the region.

  相似文献   

12.

Under variable climatic conditions, the conventional Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI) are inadequate for predicting extreme drought characteristics. Non-stationary Standardized Precipitation Index (NSPI) and Non-stationary Reconnaissance Drought Index (NRDI) are, therefore, developed by fitting non-stationary distributions. The Generalized Additive Model in Location, Scale and Shape (GAMLSS) framework, with time varying location parameters considering the external covariates, is used to fit the non-stationary distributions. Multivariate ENSO Index (MEI), Southern Oscillation Index (SOI), Sea Surface Temperature (SST), and Indian Ocean Dipole (IOD) are considered as external covariates for the non-stationary drought assessment. The performances of stationary and non-stationary models are compared. The study also concentrated on the trivariate and the Pairwise Copula Construction (PCC) models to estimate the drought return periods. The comparison of two copula models revealed that the PCC model performed better than the trivariate Student’s t copula model. The recurrence intervals arrived at for the drought events are different for trivariate copula model and PCC model. This study showed that non-stationary drought indices will be helpful in the accurate estimate of the drought characteristics under the changing climatic scenario.

  相似文献   

13.
Several drought indices have been developed based on a single variable or multiple variables using very complex calculations. Antecedent conditions are quite significant for analyzing physical processes involved in the conceptual rainfall-runoff modeling and for proper assessment of drought. However, not much attention has been paid to these conditions in the development of drought indices. Hence, we developed an alternative index for drought assessment, i.e., the antecedent condition-based multivariate drought index (AMDI), by taking into consideration all of the forms of drought, including meteorological, agricultural, and hydrological drought, in combination with the antecedent drought conditions. By comparing the AMDI with the standardized precipitation index (SPI) and reconnaissance drought index (RDI), it was revealed that in most cases, the drought trend was more or less the same. However, some discrepancies were also observed. Moreover, by considering additional factors, i.e., the antecedent soil moisture conditions and balance, an approximately 6 % difference in the drought frequency was observed compared to that of the SPI and RDI results, leading to a significant and proper drought assessment. The AMDI was also identified as a multi-scalar, multivariate index, which aggregates the effects of multiple drought forms by maintaining the continuity during month-to-month transitions. Hence, we concluded that the AMDI could be considered as an alternative tool for significant drought assessment.  相似文献   

14.
Assessment of Hydrological Drought Revisited   总被引:11,自引:1,他引:10  
A variety of indices for characterising hydrological drought have been devised which, in general, are data demanding and computationally intensive. On the contrary, for meteorological droughts very simple and effective indices such as the Standardised Precipitation Index (SPI) have been used. A methodology for characterising the severity of hydrological droughts is proposed which uses an index analogous to SPI, the Streamflow Drought Index (SDI). Cumulative streamflow is used for overlapping periods of 3, 6, 9 and 12 months within each hydrological year. Drought states are defined which form a non-stationary Markov chain. Prediction of hydrological drought based on precipitation is also investigated. The methodology is validated using reliable data from the Evinos river basin (Greece). It can be easily applied within a Drought Watch System in river basins with significant storage works and can cope with the lack of streamflow data.  相似文献   

15.

Water scarcity is one of the problems affecting people’s livelihoods in arid and semi-arid areas, requiring a sustainable balance between water demands and water resources. This study was carried out to assess temporal and spatial distribution of water supply and demand in order to help managers to overcome water scarcity in Jiroft basin, southeastern Iran. Spatial supply and demand of water were mapped and standardized rainfall index (SPI) was used to assess drought for a 20 years period (1994–2014). Supply and demand of water were matched in 23% of the basin area, mostly concentrated in the cold zones. Water supply was reduced up to 80% during dry years, declining water supply-demand matching to 5% of the basin area. Shrub-grass rangelands and deciduous woodlands were the most valuable land covers for conservation with $ 1,100 and $ 936 per hectare water prices respectively. Water value dropped more than 72% in mismanaged ecosystems (p?<?0.01). Our finding showed that water supply-demand ratio can be used as a proxy of ecosystem health and water-yield, which can provide a good information for water resources managers to reduce the threats of water scarcity in arid and semi-arid regions.

  相似文献   

16.
One of the most important hazards in terms of cost, frequency of occurrence and impact on humans is drought. Drought indices are estimations of precipitation shortage and water supply deficit. Satellite drought indices are normally radiometric recordings of vegetation condition and dynamics, exploiting the unique spectral signatures of canopy elements, particularly in the red and near-infrared bands. However, the identification of drought based on the Reconnaissance Drought Index (RDI) enables the assessment of hydro-meteorological drought, since it uses hydro-meteorological parameters. RDI is a fairly comprehensive index as it combines the simplicity of use and the successfully assessment and monitoring of the phenomenon. However, the study and understanding of the spatiotemporal variability of drought is not an easy process. In this study the main goal is to use the PCA + clustering method to transform the RDI temporal data (1982–2001) and cluster the different regions of Greece based on that temporal variations. Firstly, Principal Component Analysis (PCA) applied onto 19 annual RDI indices followed by Clustering that was based on certain eigenchannels resulted from the previous PCA analysis. Both methods are linear transformations capable to decorrelate the spatiotemporal information provided in the estimated RDI. The time series presented approach proved to be advantageous in relation to other statistical methods used to describe variability and provide excellent and fast results for stakeholders and environmental organizations. The results are quite satisfactory in classifying the drought-induced climatic regions of Greece.  相似文献   

17.
Understanding the characteristics of historical droughts will benefit water resource managers because it will reveal the possible impacts that future changes in climate may have on drought, and subsequently, the availability of water resources. The goal of this study was to reconstruct historical drought occurrences and assess future drought risk for the drought-prone Blue River Basin in Oklahoma, under a likely changing climate using three types of drought indices, i.e., Standardized Precipitation Index (SPI), Palmer Drought Severity Index (PDSI) and Standardized Runoff Index (SRI). No similar research has been conducted in this region previously. Monthly precipitation and temperature data from the observational period 1950?C1999 and over the projection period 2010?C2099 from 16 statistically downscaled Global Climate Models (GCM) were used to compute the duration, severity, and extent of meteorological droughts. Additionally, soil moisture, evapotranspiration (ET), and runoff data from the well-calibrated Thornthwaite Monthly Water Balance Model were used to examine drought from a hydrological perspective. The results show that the three indices captured the historical droughts for the past 50?years and suggest that more severe droughts of wider extent are very likely to occur over the next 90?years in the Blue River Basin, especially in the later part of the 21st century. In fact, all three indices display lower minimum values than those ever recorded in the past 50?years. This study also found that SRI and SPI (PDSI) had a correlation coefficient of 0.81 (0.78) with a 2-month (no appreciable) lag time over the 1950?C2099 time period across the basin. There was relatively lower correlation between SPI and PDSI over the same period. Although this study recommends that PDSI and SRI are the most suitable indices for assessing future drought risks under an increasingly warmer climate, more drought indices from ecological and socioeconomic perspectives should be investigated and compared to provide a complete picture of drought and its potential impacts on the dynamically coupled nature-human system.  相似文献   

18.
Drought forecasting using the Standardized Precipitation Index   总被引:9,自引:2,他引:7  
Unlike other natural disasters, drought events evolve slowly in time and their impacts generally span a long period of time. Such features do make possible a more effective drought mitigation of the most adverse effects, provided a timely monitoring of an incoming drought is available. Among the several proposed drought monitoring indices, the Standardized Precipitation Index (SPI) has found widespread application for describing and comparing droughts among different time periods and regions with different climatic conditions. However, limited efforts have been made to analyze the role of the SPI for drought forecasting. The aim of the paper is to provide two methodologies for the seasonal forecasting of SPI, under the hypothesis of uncorrelated and normally distributed monthly precipitation aggregated at various time scales k. In the first methodology, the auto-covariance matrix of SPI values is analytically derived, as a function of the statistics of the underlying monthly precipitation process, in order to compute the transition probabilities from a current drought condition to another in the future. The proposed analytical approach appears particularly valuable from a practical stand point in light of the difficulties of applying a frequency approach due to the limited number of transitions generally observed even on relatively long SPI records. Also, an analysis of the applicability of a Markov chain model has revealed the inadequacy of such an approach, since it leads to significant errors in the transition probability as shown in the paper. In the second methodology, SPI forecasts at a generic time horizon M are analytically determined, in terms of conditional expectation, as a function of past values of monthly precipitation. Forecasting accuracy is estimated through an expression of the Mean Square Error, which allows one to derive confidence intervals of prediction. Validation of the derived expressions is carried out by comparing theoretical forecasts and observed SPI values by means of a moving window technique. Results seem to confirm the reliability of the proposed methodologies, which therefore can find useful application within a drought monitoring system.  相似文献   

19.
This study has been carried out for Sonar basin of Ken River system in the Madhya Pradesh. The study was aimed at devising a suitable method for assessment of vulnerability to drought. Analysis of annual and seasonal rainfall records for the period from 1901–2007 revealed that the study basin had faced drought condition with an average frequency of once in every 5 years. The maximum rainfall deficiency recorded in the basin was of the order of −68% in 1979. Recently, drought conditions prevailed in the study basin in the years 2006 and 2007 with annual rainfall deficiency of −35% and −43%, and Standardized Precipitation Index (SPI) values as −1.14 and −1.24 respectively. The paper presents a method for spatially representative depiction of vulnerability to drought using multiple indicators in Sonar basin. These indicators include topography characteristics, land-use types, soil types, relative availability of surface water and groundwater, water demand and utilization and the rainfall departures from corresponding mean values. Spatial information of above indicators was categorized in to various sub classes and maps were prepared in spatial domain using Geographic Information system (GIS). Different layers of above independent indicators and rainfall deficiency have been integrated using a weighing scheme. Thus, the integrated values of weights of various indicators have been computed on 100 × 100 m grid scale in spatial domain and maps have been prepared to represent integrated vulnerability to drought. For rationalization of the approach drought vulnerability Index (DVI) for each grid has been calculated. The DVI has been defined as the ratio of sum of the weights of factors to the sum of their maximum weight values. The results have been validated with intensive field surveys. The proposed method represented drought vulnerability scenarios in the Sonar basin appropriately. It is hoped that this method may set a better direction for the studies on drought monitoring and mitigation.  相似文献   

20.
Effective monitoring of drought plays an important role in water resources planning and management, especially under global warming effect. The aim of this paper is to study the effect of air temperature on historical long-term droughts in regions with diverse climates in Iran. To this end, monthly air temperature (T) and precipitation (P) data were gathered from 15 longest record meteorological stations in Iran covering the period 1951–2014. Long-term meteorological droughts behavior was quantified using two different drought indices, i.e. the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). Linear and non-linear trends in T, P, SPI and SPEI were evaluated using non-parametric and parametric statistical approaches such as non-modified and modified Mann-Kendall Test, Theil-Sen approach, and simple regression. The results indicated that the significant trends for temperature are approximately all increasing (0.2 °C to 0.5 °C per decade), and for precipitation are mostly decreasing (?7.2 mm to ?14.8 mm per decade). It was also indicated that long-term drought intensities monitored by the SPI and SPEI have had significant downward trend (drought intensification with time) at most stations of interest. The observed trends in the SPI series can be worsen if air temperature (in addition to precipitation) participates in drought monitoring as SPEI. In arid and extra arid climates, it was observed that temperature has strong effects on historical drought characteristics when comparing the SPI and SPEI series. Due to the determinative role of temperature in mostly dry regions like Iran, the study suggests using the SPEI rather than SPI for more effective monitoring of droughts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号