首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Elbow River watershed, located in the rain shadow of the Rocky Mountains in western Canada, is characterized by a complex hydrological regime due to significant differences in climate and geomorphological settings between the west and east sub-catchments. This watershed has experienced several extreme droughts and floods in the recent decades, which might be accentuated with climate change. This study was undertaken to investigate the average annual and seasonal variations of surface and sub-surface hydrological processes in the west and east sub-catchments along with and the entire watershed under five plausible GCM-scenarios up to 2070 using the physically-based, distributed MIKE SHE/MIKE 11 model. Most of the scenarios indicate a reduction in the average annual overland flow, groundwater recharge and baseflow in the east sub-catchment. The pattern of seasonal change generally exhibits a rise in overland flow, baseflow, evapotranspiration, groundwater recharge, and streamflow in winter-spring and a decline in summer-fall. The induced changes in hydrological processes are proportionally more perceptible in the east sub-catchment compared to the west sub-catchment. However, the west sub-catchment governs the watershed behaviour and determines the future changes, over-riding the stronger climate change signal in the east. This investigation indicates that a greater understanding of climate change impacts on the water balance of a watershed with significant differences in sub-regional settings is achieved when capturing the surface and subsurface hydrological process responses of each sub-catchment individually along with the entire watershed. Such information can guide water resources management by providing a more rigorous assessment of the processes involved in the watershed.  相似文献   

2.

Groundwater is a primary source of drinking water in the Mediterranean, however, climate variability in conjunction with mismanagement renders it vulnerable to depletion. Spatiotemporal studies of groundwater recharge are the basis to develop strategies against this phenomenon. In this study, groundwater recharge was spatiotemporally quantified using the Soil and Water Assessment Tool (SWAT) in one coastal and one inland hydrological basin in Greece. A double calibration/validation (CV) procedure using streamflow data and MODIS ET was conducted for the inland basin of Mouriki, whereas only ET values were used in the coastal basin of Anthemountas. Calibration and simulation recharge were accurate in both sites according to statistical indicators and previous studies. In Mouriki basin, mean recharge and runoff were estimated as 16% and 9%, respectively. In Anthemountas basin recharge to the shallow aquifer and surface runoff were estimated as 12% and 16%, respectively. According to the predicted RCP 4.5 and 8.5 scenarios, significant variations in groundwater recharge are predicted in the coastal zone for the period 2020–2040 with average annual recharges decreasing by 30% (RCP 4.5) and 25% (RCP 8.5). Variations in groundwater recharge in the inland catchment of Mouriki were insignificant for the simulated period. Anthemountas basin was characterized by higher runoff rates. Groundwater management in coastal aquifers should include detailed monitoring of hydrological parameters, reinforced groundwater recharge during winter and reduced groundwater abstraction during summer depending on the spatiotemporal distribution of groundwater recharge.

  相似文献   

3.
Recently, many studies have investigated the effect of climate change on groundwater resources in semiarid and arid areas and have shown adverse effects on groundwater recharge and water level. However, only a few studies have shown suitable strategies for reducing these adverse effects. In this study, climate conditions were predicted for the future period of 2020–2044, under the emission scenarios of RCP2.6, RCP4.5, and RCP8.5, for Isfahan–Borkhar aquifer, Isfahan, Iran, using MODFLOW‐2000 (MODFLOW is United States Geological Survey product). Results showed that the average groundwater level of the aquifer would decrease to 13, 15, and 16 m in 2012 to 2044 approximately under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Then, three groundwater sustainability management scenarios were defined that included 10%, 30%, and 50% reduction in groundwater extraction. These strategies simulated the reduced negative effects of climate change on the aquifer. The results showed that decreases in water withdrawal rates of 10%, 30%, and 50% under RCP8.5 scenario (critical scenario) could decrease the mean groundwater level by 14, 11, and 7 m, respectively. The main result of the study showed that 50% reduction in groundwater withdrawal may increase the groundwater levels significantly in order to restore the aquifer sustainability in the study area. In this study, with assuming that the current harvest of wells in the future period is constant, so the results of studies showed that for the aquifer's sustainability management, the water abstraction from the aquifer should reduce up to 50% of the existing wells. Changing the irrigation method from surface to subdroplet irrigation plays an important role in reducing the withdrawal from the aquifer. The results of a study in Iran have shown that the change in the irrigation method from surface to subdroplet irrigation causes a 40% reduction in water use for agriculture.  相似文献   

4.
Climate change, besides global warming, is expected to intensify the hydrological cycle, which can impact watershed nutrient yields and affect water quality in the receiving water bodies. The Mahabad Dam Reservoir in northwest Iran is a eutrophic reservoir due to excessive watershed nutrient input, which could be exacerbated due to climate change. In this regard, a holistic approach was employed by linking a climate model (CanESM2), watershed-scale model (SWAT), and reservoir water quality model (CE-QUAL-W2). The triple model investigates the cumulative climate change effects on hydrological parameters, watershed yields, and the reservoir’s water quality. The SDSM model downscaled the output of the climate model under moderate (RCP4.5) and extreme (RCP8.5) scenarios for the periods of 2021–2040 and 2041–2060. The impact of future climate conditions was investigated on the watershed runoff and total phosphorus (TP) load, and consequently, water quality status in the dam’s reservoir. The results of comparing future conditions (2021–2060) with observed present values under moderate to extreme climate scenarios showed a 4–7% temperature increase and a 6–11% precipitation decrease. Moreover, the SWAT model showed a 9–16% decline in streamflow and a 12–18% decline in the watershed TP load for the same comparative period. Finally, CE-QUAL-W2 model results showed a 3–8% increase in the reservoir water temperature and a 10–16% increase in TP concentration. It indicates that climate change would intensify the thermal stratification and eutrophication level in the reservoir, especially during the year’s warm months. This finding specifies an alarming condition that demands serious preventive and corrective measures.  相似文献   

5.
为研究在流域或盆地尺度上降雨入渗补给地下水水文响应的滞后效应,采用ArcGIS技术,并基于MIKE SHE软件数值分析的方法,建立了丹麦Skjern流域地表水-地下水耦合的分布式水文模型,运用观测值对该模型进行参数率定。通过观测值和模拟值对比,同时分析了Skjern流域气候条件和地下水埋深对地下水水文响应的影响,结果表明:丹麦属于温带海洋性气候,Skjern流域地下水补给集中在9—12月和1—3月;地下水位埋深为1m左右时,降雨入渗补给很快到达地下水面,地下水补给峰值的滞后时间很短,大约1~2 d;对于地下水位埋深在2~5 m之间的,滞后现象较为明显,峰值滞后4~5 d;对于地下水位埋深>10 m的, 峰值滞后时间则很长。该模型模拟Skjern流域效果较好,模型对于Skjern流域具有一定的适用性和应用潜力。  相似文献   

6.
为探究未来气候变化对流域生态需水量的影响,保障河流生态需水量,针对好溪流域进行生态需水量计算 及预测。基于好溪流域气象数据及下垫面条件建立流域生态需水模型,并根据 GF1-WFV 遥感影像数据订正后的 地表反射率和作物种植结构提升模型模拟精度。选择 CanESM2气候模式下的 RCP2.6、RCP4.5 和 RCP8.5 这 3 种 排放情景,建立气候变化背景下流域生态需水预测方法,计算现状年并预测未来年份的生态需水量及生态需水保 障程度。结果表明,基于光学遥感影像进行数据订正后,模型模拟精度有所提升,率定期的模型精度 R2从 0.80 提 升为 0.85,验证期的 R2从 0.75 提升至 0.78。应用提升精度后的模型进行生态需水预测,在 RCP2.6、RCP4.5 和 RCP8.5 情景下,2025—2100 年的年均生态需水分别增加了 0.27 亿、0.21 亿和 0.29 亿 m3,其中 RCP8.5 情景下生态 需水保障程度最高,RCP4.5 情景下生态需水保障程度最低。  相似文献   

7.

Due to the impacts of climate change on agriculture and water allocation, an investigation of the farmers’ perceptions and stakeholders’ views on the adaptation strategies to climate change has a great of importance for sustainable development in the future. In this study, a fuzzy based decision support system has been developed to evaluate and rank the proposed adaptation scenarios to climate change in the Jarreh agricultural water resources system in southwest of Iran. Using output of ten coupled models inter comparison project phase 5 (CMIP5) under two representative concentration pathway scenarios (RCP 4.5, and RCP 8.5), the results indicated an increasing the annual mean temperature (1.64–1.84 °C under RCP 4.5, and 1.85–2.1 °C under RCP 8.5), reducing the amount of runoff into the reservoir (17.83–46.24% under RCP 4.5, and 21.54–50.91%under RCP 8.5), as well as increasing the amount of agricultural water requirement. Also, the results showed decreasing in reliability of system (12–53% under RCP 4.5, and 23–63% under RCP 8.5). Following, due to the main purpose of the system, six adaptation scenarios by using a questionnaire and stakeholders’ opinions are proposed to mitigate the effects of climate change. In the next step, by fuzzy mode of the technique for order of preference by similarity to ideal solution (TOPSIS) and fuzzy preference ranking organization method for enrichment of evaluations (PROMETHEE II), the proposed scenarios have been ranked according to the performance criteria. The final results of this study indicated the superiority of improving the irrigation efficiency and decreasing the area under cultivation among other proposed scenarios.

  相似文献   

8.
The spatial-temporal variability of groundwater in an inland basin is very sensitive to human activity. This study focused on groundwater changes in the Alagan area within the Tarim Basin, China, with the aim of analyzing the effects of land-use change and artificial recharge on the response characteristics of groundwater. The distributed hydrological model MIKE SHE was introduced for modeling the influence of land use and artificial recharge on groundwater. Based on the runoff variation of this area, we selected three periods to simulate and analyze the response of groundwater. The results of land-use change indicated that there were significant changes from 1980 to 2000. The changed region accounted for 11.93 % of the total area, and the low coverage grasslands showed the greatest reduction. The simulation of hydrological processes before artificial recharge showed that the groundwater depths differed greatly with land-use types. Response analysis of groundwater to artificial recharge showed that the regions in which groundwater decreased were mainly distributed in grassland and bare land. Moreover, spatial autocorrelation coefficients indicated positive spatial autocorrelation of groundwater depths, but these began to reverse in 2010. Overall, land use and artificial recharge have a great influence on the time and spatial distribution of groundwater. Artificial recharge has played a positive role in improving groundwater conditions, but did not change the decreasing trend in time and space. The adaptation of environment to the decrease of groundwater presents as degradation. Groundwater conditions could be improved to some extent by the artificial recharge, but its change seems to be an irreversible process. Overall, this response study provides insight into estimations for exploration of water resources in arid areas.  相似文献   

9.
针对华北平原地下水利用中存在的问题,采用分布式水文MIKE SHE模型,考虑人类活动(农业节水措施和南水北调工程)和气候变化等变化环境的影响,通过设定4大类情景(每类情景中均设定了3类气候变化子情景)模拟了2019-2028年华北平原地下水的利用状况。结果表明:农业节水措施和南水北调工程等人类活动对华北平原地下水水位、水均衡和含水层储量有较大的影响;相对于现状保持型情景(SQM),模拟期末(2028年12月31日)农业节水型情景(AWS)、南水北调工程供水型情景(SNWDP)和综合利用型情景(CU)下华北平原饱和含水层储量分别增加0.168、0.558和1.433 m;气候变化对华北平原地下水的影响量级与人类活动的影响相当,且地下水水位、水均衡和含水层储量变化的方向和大小均与未来气候条件的干湿程度呈正相关关系,到模拟期末,相对于现状保持型情景(SQM),湿润、正常和干旱的气候情景下华北平原饱和含水层储量分别为增加0.972~2.239 m、增加0.119~1.540 m和减少0.372~0.940 m;只有综合考虑各种引水和节水措施,多管齐下,才能保证华北平原地下水的可持续利用。  相似文献   

10.
11.
新安江流域气候变化及径流响应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对新安江流域新安江水库控制区域,构建新安江月水文模型,利用1979-2005年实测水文资料对模型进行率定和验证,并以CMIP5大气环流模式输出驱动水文模型,生成2006-2099年该流域在RCP2.6、RCP4.5和RCP8.5情景下的逐月径流过程。在此基础上,研究气候变化背景下流域气温、降雨、蒸发和径流的变化趋势,并对其不确定性进行分析。结果表明:2006-2099年该流域年均气温与年蒸发深度均呈上升趋势,且对于辐射强度变化较敏感,呈显著正相关关系。流域年降雨量与径流深呈波动上升趋势,对于辐射强度变化敏感性并不显著。年径流深在丰水年和平水年相对基准期有所减少,而在枯水年和特枯水年则呈增加趋势。月径流深在秋、冬季呈上升趋势,在春、夏季则呈下降趋势。  相似文献   

12.
为分析鄱阳湖流域气候变化特征及评估其对流域径流的影响,研究利用1961-2010年间鄱阳湖流域29个气象站和入湖"五河"水文控制站观测数据,分析该时段内流域气候和径流量变化趋势,建立统计模型分析其对流域径流量的影响。研究结果表明:鄱阳湖流域年气温呈显著性(99%置信度检验)波动上升趋势,流域降水总体呈略上升趋势,降水天数呈下降趋势。受气候变化的影响,鄱阳湖流域径流量呈上升趋势。统计模型计算结果表明,径流量与降雨变化呈非线性关系,径流量对降雨变化有着较强的敏感性,相同的气温变化情景下,降水增加比降水减少对径流量的影响更加显著,表明降水变化对径流量有着不同程度和方向的影响作用。气温对径流的影响呈线性,但其影响不明显。未来气候变化情景下,2050年前鄱阳湖流域在高排放A2和RCP8.5情景下呈现明显增长趋势,但其径流量低于其他排放情景。  相似文献   

13.
Afshar  Abbas  Khosravi  Mina  Molajou  Amir 《Water Resources Management》2021,35(11):3463-3479

Groundwater overdraft in many regions throughout the world has been threatening the sustainability of this valuable resource. It has been argued that climate change may contribute to the severity of the issue; hence “impact assessment” is being replaced by “adaptation,” which explores more adapting scenarios and approaches. This study explores the adaptability of the proposed cyclic and non-cyclic conjunctive use of groundwater and surface water resources in increasing groundwater sustainability while increasing the sustainability of water allocation to the agricultural sector under possible climate change scenarios. To simulate climate change in the study area, precipitation and temperature variables are extracted from the results of three global atmospheric circulation models (Ensemble, CMCC-CMS, MRI-CGCM3) under RCP2.6 and RCP8.5 greenhouse gas emission scenarios in the period of 2021–2031. Spatial downscaling is performed using the M5 decision tree algorithm. The Wavelet-M5 hybrid model is used to predict runoff values as a rainfall-runoff model. Also, the Kharrufa method is applied to calculate evaporation in the future seasons. The system's adaptability to climate change is examined using the multi-objective cyclic and non-cyclic conjunctive use of surface and groundwater models. The study reveals that cyclic operation strategy improves the conjunctive use system adaptability compared to the optimal operation strategy that employs the non-cyclic approach. In this study's case study, the improvement in groundwater sustainability index exceeds 27 percent over the non-cyclic conjunctive use strategy.

  相似文献   

14.
Sustainable management of groundwater resources to support food security under the potential effects of climate change is an emerging area of research and particularly relevant in the context of Small Island Developing States. Employing three regional downscaled Representative Connection Pathway (RCP 2.6, RCP4.5, and RCP 8.5) emission scenarios that have been linked to an economic evaluation framework, the potential impact of climate change on groundwater scarcity, economic value of groundwater irrigation, food security, and farming livelihoods is investigated. A nonlinear hydro-economic framework, which integrates groundwater hydrology, climate data, land use, economics and institutions, has been applied for the island of Barbados. Results indicate that climate change would intensify the dependency on groundwater irrigation overtime, modulated by climate intensity. The strength of climate change will boost the marginal value of groundwater irrigation, as food price will scale up, presenting negative impacts on food security and reducing farming livelihoods. The climate change would also result in higher cost of producing foods resulting from increased cost of pumping, mainly driven by the effect of meeting abstraction needs for domestic and municipal consumption. Our primary results show that for a small island, sustaining groundwater resources will be a challenging objective to achieve under severe climate change.  相似文献   

15.
MIKE SHE作为一种分布式水文模型被越来越多地运用到流域规划、水资源管理、水资源评价等方面。利用MIKE SHE对营口鲅鱼圈地区地下水资源进行了评价,并与辽宁省第二次水资源评价成果做了对比,结果是比较理想的。  相似文献   

16.

Assessing the effects of climate change phenomenon on the natural resources, especially available water resources, considering the existing constraints and planning to reduce its adverse effects, requires continuous monitoring and quantification of the adverse effects, so that policymakers can analyze the performance of any system in different conditions clearly and explicitly. The most important objectives of the present research including: (1) calculating the sustainability index for each demand node based on the characteristics of its water supply individually and also calculating the sustainability index of the whole water supply system, (2) investigation the compatible of changes trend among various reservoir performance indexes and (3) evaluation the changes in performance reservoir indexes in the future time period compared to the baseline tie period under three Concentration Pathway (RCP) RCP2.6, RCP4.5 and RCP8.5 scenarios for all water demand nodes and the entire water supply system. To this end, first, climatic parameters data affecting on the water resources such as temperature and precipitation were gathered in the baseline period (1977–2001) and the climatic scenarios were generated for the future period (2016–2040) using the Fifth Assessment Report (AR5) of the International Panel on Climate Change (IPCC). Then, the irrigation demand changes of the agricultural products with the Cropwat model and the value of inflow to the reservoir with the Artificial Neural Network (ANN) model were calculated under the climate change effects. In the next step, the climate change effects on the water supply and demand were simulated using Water Evaluation and Planning model (WEAP), and its results were extracted so as the water management indexes. The results show that the temperature will increase in the future period under all three RCP scenarios (RCP2.6, RCP4.5 and RCP8.5) compared to the baseline period, while precipitation will decrease under the RCP2.6 scenario but will increases under RCP4.5 and RCP8.5 scenarios. Under the trend of changing in temperature and rainfall, the irrigation demand in the agricultural sector in all scenarios will increase compared to the baseline period. However, the inflow of reservoir will decrease under the RCP2.6 and RCP4.5 scenarios and will increases under RCP8.5 scenario. Evaluation of WEAP modeling results shows that the sustainability index of the entire Marun water-energy system will decrease in the future period compared to the baseline period under the RCP2.6, RCP4.5 and RCP8.5 scenarios by 13, 10 and 8%, respectively. The decrease in the system sustainability index shows that in the absence of early planning, the Marun water-energy supply system will face several challenges for meeting the increasing demand of water in different consumer sectors in the coming years.

  相似文献   

17.
In regions where the Mediterranean climate prevails, the agricultural sector and agricultural-operated dam reservoirs are threatened by climate change. In this respect, the prediction of hydro-meteorological changes that may occur in surface water resources under climate change scenarios is essential to examine the sustainability of reservoirs. In this paper, Demirköprü reservoir in the Gediz Basin/Turkey, a reservoir operated for irrigation purposes, was analyzed against the RCP4.5 and RCP 8.5 scenarios specified in the AR5 report of the IPCC. Projection period was evaluated as 2016-2050 water year period. First, statistical downscaling, Bayesian model averaging and quantile delta mapping bias correction techniques were respectively applied to monthly total precipitation and monthly average temperatures of meteorological stations in the region using 12 GCMs. According to RCP4.5 and RCP8.5, negligible reductions in precipitation are foreseen, while significant increases of 1.3 and 1.8 °C, respectively, are projected for temperatures under the same scenarios. Following the calibration of rainfall-runoff models for the sub-basins feeding the reservoir, streamflow simulations were also performed with projected precipitation and temperatures. In particular, according to the RCP 8.5 scenario, reservoir inflows during the period 2016-2050 could be reduced by 21% compared to the reference scenario results. Finally, the projected crop water demands and hydro-meteorological changes are evaluated together and the reservoir performances are examined using various indices. Assuming that the performance of the past irrigation yields will not change in the future, it is foreseen that reservoir’s sustainability will decrease by 16% under the RCP8.5 scenario. Even if the irrigation efficiency is increased by 40%, the reservoir cannot reach past sustainability characteristics.  相似文献   

18.
In the present study, spatio-temporal variability of hydrological components under climate change is analysed over Wainganga River basin, India. In order to address the climate change projection, hydrological modelling is carried out using a macro scale, semi-distributed three (3)-Layer Variable Infiltration Capacity (VIC-3 L) model. The high-resolution (0.5o?×?0.5o) meteorological variables are divided into multiple periods to calibrate and validate the VIC-3 L model. The future projections (2020–2094) of the water balance components are achieved using the high resolution hydrological variables from the COordinated Regional Downscaling EXperiment (CORDEX) dataset under Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. The uncertainty associated with the multi-model projections are evaluated using Reliability Ensemble Averaging (REA) and the bias correction is accomplished with non-parametric quantile mapping. A probabilistic based areal drought index is also computed for different scenarios using Standardized Precipitation Evapotranspiration Index (SPEI). From the results, it is observed that amount of rainfall, evapotranspiration, and runoff has increased over the basin with no change in the spatial pattern. However, temporal variability is noticed with an increasing trend for rainfall and runoff in the non-monsoon season than the monsoon. Streamflow is expected to increase significantly, especially for medium to low flows (those occurring between 0.2 and 0.9 probability of exceedance in a Flow Duration Curve). In addition, the area under the drought condition has decreased under the projected climate scenarios.  相似文献   

19.
潘家口水库流域土地利用变化的水文响应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以潘家口水库流域为研究区域,采用SWAT分布式水文模型定量评估土地利用变化对流域径流过程的影响。相对于1980年土地利用情景,2006年土地利用变化主要表现为耕地减少,林地和草地面积增大,而水域和城镇用地变化相对较小。利用3个水文站1986年1月至1999年12月的月径流实测数据进行模型的校准和验证。在不同土地利用情景下,对流域的天然径流过程进行模拟分析,模拟结果显示,与1980年土地利用情景相比,2006年土地利用情景下的多年平均径流减少11%;对于不同典型水文年份而言,土地利用变化对枯水年的影响最大,对丰水年和平水年的影响相当;土地利用变化对年径流的影响主要表现为汛期径流减少。潘家口水库流域水资源涵养能力有所增加。模拟研究土地利用变化对潘家口水库流域径流的影响对合理规划土地利用和流域水资源的综合管理具有现实意义。  相似文献   

20.
《水科学与水工程》2020,13(4):265-274
Rivers in arid and semi-arid regions are threatened by droughts and climate change. This study focused on a comparative evaluation of the impacts of climate change and droughts on the vulnerability of river flows in three basins with diverse climates in Iran. The standardized precipitation-evapotranspiration index (SPEI) and precipitation effectiveness variables (PEVs) extracted from the conjunctive precipitation effectiveness index (CPEI) were used to analyze the drought severity. To investigate hydrological droughts in the basins, the normalized difference water index (NDWI) and the streamflow drought index (SDI) were calculated and compared. The effects of droughts were assessed under various representative concentration pathway (RCP) scenarios. Changes in the number of wet days and precipitation depth restricted hydrological droughts, whereas an increasing number of dry days amplified their severity. The projected increases in dry days and precipitation over short durations throughout a year under future climate scenarios would produce changes in drought and flood periods and ultimately impact the frequency and severity of hydrological droughts. Under RCP 4.5, an increase in the frequencies of moderate and severe meteorological/hydrological droughts would further affect the Central Desert Basin. Under RCPs 2.6 and 8.5, the frequencies of severe and extreme droughts would increase, but the drought area would be smaller than that under RCP 4.5, demonstrating less severe drought conditions. Due to the shallow depths of most rivers, SDI was found to be more feasible than NDWI in detecting hydrological droughts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号