首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The problem of irrigation planning becomes more complex by considering an uncertainty. The uncertainties can be tackled by formulating the problem of irrigation planning as Fuzzy Linear Programming (FLP). FLP models can incorporate the scenario of real world problem. In the present study, Multi Objective Fuzzy Linear Programming (MOFLP) irrigation planning model is formulated for deriving the optimal cropping pattern plan for the case study of Jayakwadi project in the Godavari river sub basin in Maharashtra State, India. Four conflicting objectives are considered such as Net Benefits (NB), Crop/Yield Production (CP), Employment Generation/Labour Requirement (EG) and Manure Utilization (MU). Four different cases are considered to incorporate the uncertainty in MOFLP model. To include the uncertainty in irrigation planning problem only objectives are taken as fuzzy and constraints are crisp in nature in Case-I. To consider the uncertainty involved in availability of resources, in Case-II the stipulations are fuzzy. The technological coefficients are fuzzy in Case-III. The Case-IV includes both technological coefficients and stipulations fuzzy. The level of satisfaction (λ) works out to be 0.58, 0.50, 0.50 and 0.28 respectively for Case-I to IV. The results obtained in Case-IV are more realistic and promising as it involves the uncertainty in technological coefficients and stipulations simultaneously.  相似文献   

2.
A tank cum open dug well system suitable for plateau region of eastern India has been developed for providing reliable irrigation to croplands. The system comprises of a series of tanks with open dug wells in the recharge zone of the tank that reharvest back the seepage water. Thus, the rainwater remaining in the tank as well as partial seeped water is used for providing round the year full irrigation. This system was evaluated in field in Keonjhar district of Orissa of eastern India with six tanks and five wells in two drainage lines. The total command area of the system of six tanks and five wells in both drainage lines is 23 ha and the total irrigation potential is 44.5 ha. The total cost of the system is US $19,180 making the cost of irrigation resource creation as US $426 per ha which is much less than about $2,220 per ha for major and medium irrigation projects in the last decade of 20th century. The system increased the rice yields from 1.92 t ha − 1 to a range of 2.25 to 3.8 t ha − 1 depending upon the package of practices or the amount of inputs. The farmers went for crops in post-monsoon and summer season and the cropping intensity rose to 112% in the first year, 126% in the second year and 132% in the third year. The internal rate of return from the system was 13.4% at the present level of utilization, which is about 2.4% more than the prime-lending rate of Indian banks, and 3.4% more than the lending rate for agricultural purposes.  相似文献   

3.
This paper explores the impact on water demand of the adoption of deficit and precision irrigation as a farmer’s attempt to respond to water scarcity by maximising water productivity. The case study is characterised by the intensive use of deficit irrigation techniques in olive groves, which account for 50% of all irrigated land in southern Spain. These technologies have an important influence on the structure of the water demand. This study reveals that following the adoption of such technologies, water demand does not respond to moderate changes in water price, unless price increases become so great that they reach a threshold price representing a disproportionate and unaffordable social impact. This fact has significant consequences for water policy as water pricing becomes an ineffective instrument for managing water demand in a context characterised by resource scarcity and farmers’ adoption of deficit irrigation techniques.  相似文献   

4.
Şen  Zekâi 《Water Resources Management》2021,35(11):3827-3843
Water Resources Management - Arid region water reservoirs have different characteristics and solutions from humid regions with the most water shortage in the world socio-economically. This paper...  相似文献   

5.
Climate change, socio-demographic change and changing patterns of ordinary consumption are creating new and unpredictable pressures on urban water resources in the UK. While demand management is currently offered as a first option for managing supply/demand deficit, the uncertainties around demand and its’ potential trajectories are problematic for water resources research, planning and policy. In this article we review the ways in which particular branches of social science come together to offer a model of ‘distributed demand’ that helps explain these current and future uncertainties. We also identify potential strategies for tracking where the drivers of change for demand may lie. Rather than suggest an alternative ‘demand forecasting’ technique, we propose methodological approaches that ‘stretch out’ and ‘scale up’ proxy measures of demand to inform water resources planning and policy. These proxy measurements could act as ‘indictors of change’ to water demand at a population level that could then be used to inform research and policy strategies. We conclude by arguing for the need to recognise the co-production of demand futures and supply trajectories.  相似文献   

6.
7.
Li Ailing 《国际水》2013,38(2):228-231
Abstract

The optimal operation problem of multiple hydroelectric reservoir systems is very complex because of the large dimensions. Large-scale system decomposition-coordination methods, which can simplify complex problems into several interrelated sub-problems to avoid the “curse of dimensionality” and to obtain the global optimum on the global through coordination among sub-systems, is particularly well suited for optimizing large-scale, multi-reservoir systems. Applying this kind of theory and method, this paper studies and analyzes the problems of optimal operation of multiple hydroelectric reservoir systems in series, and sets up the optimal operation model of hydroelectric reservoir systems in series. On this basis, a practical example of two hydroelectric reservoirs in series on the upper reaches of the Yellow River in China is calculated and analyzed and the results are satisfactory. It is believed that applying this model can cut down the dimensions of the problem notably and that the theory and method are effective for real time operation.  相似文献   

8.
This study investigates an interdisciplinary scenario analysis to assess the potential impacts of climate, land use/cover and population changes on future water availability and demand in the Srepok River basin, a trans-boundary basin. Based on the output from a high-resolution Regional Climate Model (ECHAM 4, Scenarios A2 and B2) developed by the Southeast Asia—System for Analysis, Research and Training (SEA-START) Regional Center, future rainfall was downscaled to the study area and bias correction was carried out to generate the daily rainfall series. Land use/cover change was quantified using a GIS-based logistic regression approach and future population was projected from the historical data. These changes, individually or in combination, were then input into the calibrated hydrological model (HEC-HMS) to project future hydrological variables. The results reveal that surface runoff will be increased with increased future rainfall. Land use/cover change is found to have the largest impact on increased water demand, and thus reduced future water availability. The combined scenario shows an increasing level of water stress at both the basin and sub-basin levels, especially in the dry season.  相似文献   

9.
10.
The increasingly urgent reform of water allocation is challenged by the complexity of the political dimension, in particular the need to reconcile often competing objectives such as food and energy security and green growth. Moreover, these objectives are unstable, and allocation regimes have to adjust to shifting priorities and circumstances at the lowest cost to society. Climate change generates additional uncertainty in water availability and demand. This calls for robust allocation regimes that can adjust, reallocate and reduce water allocation in an organized way.  相似文献   

11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号