首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Climate change, drought and the world??s growing population are increasing the demand for water which in turn requires improved water resources management. The sustainable management of a watershed requires a thorough knowledge of its water resources, including monthly streamflow. Spain is home to a large number of ungauged watersheds, the streamflows of which are often unknown. Chavez et al. (2007) reported a model for predicting monthly streamflow in ungauged watersheds that was validated for use in areas of tropical climate in Central America and a dry area in South America. This work reports an attempt to assess the performance of this model for eventual use with ungauged watersheds in Spain, using data for a number of watersheds for which gauging data were available. The proposed model took into account physical characteristics such us the soil infiltration rate, the slope of the terrain, plant fractional cover, the monthly moisture adequacy index, and the leaf area index. Comparisons of model-predicted monthly streamflows and those actually measured showed the Chavez et al. model unable to make reliable predictions for Spanish watersheds in its current form. A new approach has been developed considering only smaller watersheds in Spanish conditions, changing parameters in the original model. These parameters have been calibrated and validated, reaching adequate adjustment of results.  相似文献   

2.
Shu  Xingsheng  Ding  Wei  Peng  Yong  Wang  Ziru  Wu  Jian  Li  Min 《Water Resources Management》2021,35(15):5089-5104

Monthly streamflow forecasting is vital for managing water resources. Recently, numerous studies have explored and evidenced the potential of artificial intelligence (AI) models in hydrological forecasting. In this study, the feasibility of the convolutional neural network (CNN), a deep learning method, is explored for monthly streamflow forecasting. CNN can automatically extract critical features from numerous inputs with its convolution–pooling mechanism, which is a distinct advantage compared with other AI models. Hydrological and large-scale atmospheric circulation variables, including rainfall, streamflow, and atmospheric circulation factors are used to establish models and forecast streamflow for Huanren Reservoir and Xiangjiaba Hydropower Station, China. The artificial neural network (ANN) and extreme learning machine (ELM) with inputs identified based on cross-correlation and mutual information analyses are established for comparative analyses. The performances of these models are assessed with several statistical metrics and graphical evaluation methods. The results show that CNN outperforms ANN and ELM in all statistical measures. Moreover, CNN shows better stability in forecasting accuracy.

  相似文献   

3.
Water Resources Management - The issue of predicting monthly streamflow data is an important issue in water resources engineering. In this paper, a hybrid model was proposed to generate monthly...  相似文献   

4.
Shu  Xingsheng  Peng  Yong  Ding  Wei  Wang  Ziru  Wu  Jian 《Water Resources Management》2022,36(11):3949-3964
Water Resources Management - Many hydrological applications related to water resource planning and management primarily rely on a succession of streamflow forecasts with extensive lead times. In...  相似文献   

5.

From a watershed management perspective, streamflow need to be predicted accurately using simple, reliable, and cost-effective tools. Present study demonstrates the first applications of a novel optimized deep-learning algorithm of a convolutional neural network (CNN) using BAT metaheuristic algorithm (i.e., CNN-BAT). Using the prediction powers of 4 well-known algorithms as benchmarks – multilayer perceptron (MLP-BAT), adaptive neuro-fuzzy inference system (ANFIS-BAT), support vector regression (SVR-BAT) and random forest (RF-BAT), the CNN-BAT model is tested for daily streamflow (Qt) prediction in the Korkorsar catchment in northern Iran. Fifteen years of daily rainfall (Rt) and streamflow data from 1997 to 2012 were collected and used for model development and evaluation. The dataset was divided into two groups for building and testing models. The correlation coefficient (r) between rainfall and streamflow with and without antecedent events (i.e., Rt-1, Rt-2, etc.) (as the input variables) and Qt (as the output variable) served as the basis for constructing different input scenarios. Several quantitative and visually-based evaluation metrics were used to validate and compare the model’s performance. The results indicate that Rt was the most effective input variable on Qt prediction and the integration of Rt, Rt-1, and Qt-1 was the optimal input combination. The evaluation metrics show that the CNN-BAT algorithm outperforms the other algorithms. The Friedman and Wilcoxon signed-rank test indicates that the prediction power of CNN-BAT algorithm is significantly/statistically different from the other developed algorithms.

  相似文献   

6.
7.
Jiang  Yan  Bao  Xin  Hao  Shaonan  Zhao  Hongtao  Li  Xuyong  Wu  Xianing 《Water Resources Management》2020,34(11):3515-3531

We have developed a hybrid model that integrates chaos theory and an extreme learning machine with optimal parameters selected using an improved particle swarm optimization (ELM-IPSO) for monthly runoff analysis and prediction. Monthly streamflow data covering a period of 55 years from Daiying hydrological station in the Chaohe River basin in northern China were used for the study. The Lyapunov exponent, the correlation dimension method, and the nonlinear prediction method were used to characterize the streamflow data. With the time series of the reconstructed phase space matrix as input variables, an improved particle swarm optimization was used to improve the performance of the extreme learning machine. Finally, the optimal chaotic ensemble learning model for monthly streamflow prediction was obtained. The accuracy of the predictions of the streamflow series (linear correlation coefficient of about 0.89 and efficiency coefficient of about 0.78) indicate the validity of our approach for predicting streamflow dynamics. The developed method had a higher prediction accuracy compared with an auto-regression method, an artificial neural network, an extreme learning machine with genetic algorithm and with PSO algorithm, suggesting that ELM-IPSO is an efficient method for monthly streamflow prediction.

  相似文献   

8.
Water Resources Management - In recent decades, due to groundwater withdrawal in the Kabodarahang region, Iran, Hamadan, hazardous events such as sinkholes, droughts, water scarcity, etc., have...  相似文献   

9.
Researchers have studied to forecast the streamflow in order to develop the water usage policy. They have used not only traditional methods, but also computer aided methods. Some black-box models, like Adaptive Neuro Fuzzy Inference Systems (ANFIS), became very popular for the hydrologic engineering, because of their rapidity and less variation requirements. Wavelet Transform has become a useful tool for the analysis of the variations in time series. In this study, a hybrid model, Wavelet-Neuro Fuzzy (WNF), has been used to forecast the streamflow data of 5 Flow Observation Stations (FOS), which belong to Sakarya Basin in Turkey. In order to evaluate the accuracy performance of the model, Auto Regressive Integrated Moving Average (ARIMA) model has been used with the same data sets. The comparison has been made by Root Mean Squared Errors (RMSE) of the models. Results showed that hybrid WNF model forecasts the streamflow more accurately than ARIMA model.  相似文献   

10.
Bai  Yun  Bezak  Nejc  Sapač  Klaudija  Klun  Mateja  Zhang  Jin 《Water Resources Management》2019,33(14):4783-4797

Reservoir inflow forecasting is extremely important for the management of a reservoir. In practice, accurate forecasting depends on the feature learning performance. To better address this issue, this paper proposed a feature-enhanced regression model (FER), which combined stack autoencoder (SAE) with long short-term memory (LSTM). This model had two constituents: (1) The SAE was constructed to learn a representation as close as possible to the original inputs. Through deep learning, the enhanced feature could be captured sufficiently. (2) The LSTM was established to simulate the mapping between the enhanced features and the outputs. Under recursive modeling, the patterns of correlation in the short term and dependence in the long term were considered comprehensively. To estimate the performance of the FER model, two historical daily discharge series were investigated, i.e., the Yangtze River in China and the Sava Dolinka River in Slovenia. The proposed model was compared with other machine-learning methods (i.e., the LSTM, SAE-based neural network, and traditional neural network). The results demonstrated that the proposed FER model yields the best forecasting performance in terms of six evaluation criteria. The proposed model integrates the deep learning and recursive modeling, and thus being beneficial to exploring complex features in the reservoir inflow forecasting. Moreover, for smaller catchments with significant torrential characteristics, more data are needed (e.g., at least 20 years) to effectively train the model and to obtain accurate flood-forecasting results.

  相似文献   

11.
In this paper, the development and evaluation of an entropy based hybrid data driven model coupled with input selection approach and wavelet transformation is investigated for long-term streamflow forecasting with 10 years lead time. To develop and test the models, data including 45 years of monthly streamflow time series from Taleghan basin, located in northwest of Tehran, are employed. For this purpose, first the performance of a maximum entropy forecasting model is evaluated. To boost the accuracy, an auto-correlation method with %95 confidence levels was carried out to determine the optimum order of the entropy model. Nevertheless, the basic entropy model, as expected, was only able to reach Nash-Sutcliffe efficiency (NSE) index of 0.35 during the test period. On the other hand, data driven models such as artificial neural networks (ANN) have shown to yield good accuracy in modeling complicated and nonlinear systems. Thus, to improve the performance of the maximum entropy model, an entropy-based hybrid model using evolutionary ANN (ENN) was proposed for further investigation. The proposed model with seasonality index substantially improved the test NSE to 0.51 and provided more accurate results than the basic entropy model. Moreover, when wavelet transform was applied to preprocess the input data, the model shows a slight improvement (NSE?=?0.54).  相似文献   

12.
Meng  Erhao  Huang  Shengzhi  Huang  Qiang  Fang  Wei  Wang  Hao  Leng  Guoyong  Wang  Lu  Liang  Hao 《Water Resources Management》2021,35(4):1321-1337

Some previous studies have proved that prediction models using traditional overall decomposition sampling (ODS) strategy are unreasonable because the subseries obtained by the ODS strategy contain future information to be predicted. It is, therefore, necessary to put forward a new sampling strategy to fix this defect and also to improve the accuracy and reliability of decomposition-based models. In this paper, a stepwise decomposition sampling (SDS) strategy according to the practical prediction process is introduced. Moreover, an innovative input selection framework is proposed to build a strong decomposition-based monthly streamflow prediction model, in which sunspots and atmospheric circulation anomaly factors are employed as candidate input variables to enhance the prediction accuracy of monthly streamflow in addition to regular inputs such as precipitation and evaporation. Meanwhile, the partial correlation algorithm is employed to select optimal input variables from candidate input variables including precipitation, evaporation, sunspots, and atmospheric circulation anomaly factors. Four basins of the U.S. MOPEX project with various climate characteristics were selected as a case study. Results indicate that: (1) adding teleconnection factors into candidate input variables helps enhance the prediction accuracy of the support vector machine (SVM) model in predicting streamflow; (2) the innovative input selection framework helps to improve the prediction capacity of models whose candidate input variables interact with each other compared with traditional selection strategy; (3) the SDS strategy can effectively prevent future information from being included into input variables, which is an appropriate substitute of the ODS strategy in developing prediction models; (4) as for monthly streamflow, the hybrid variable model decomposition-support vector machine (VMD-SVM) models, using an innovative input selection framework and the SDS strategy, perform better than those which have not adopted this framework in all study areas. Generally, the findings of this study showed that the hybrid VMD-SVM model combining the SDS strategy and innovative input selection framework is a useful and powerful tool for practical hydrological prediction work in the context of climate change.

  相似文献   

13.
水文过程的月均径流序列存在着较明显的低维混沌特性,利用Volterra模型可以较好的预测低维混沌序列。引入低维混沌动力系统相空间坐标重构的Volterra自适应预测模型,对多年月均径流序列采用二阶Volterra自适应滤波器进行预测。以大渡河石棉站33年的月径流量为例进行验证,预测相对误差<10%的天数为73.3%,相对误差<20%的天数为90.0%,与人工神经网络预测结果对比表明该方法具有较满意的准确率。  相似文献   

14.
Current precipitation and past climate variability induce considerable intermonthly fluctuations in spring discharges. This study presents the DISHMET model (Discharge Hydro-Climatological Model) developed to perform historical spring reconstructions in the lack of physical assumptions. We analyzed discharge data of the Caraventa spring, located on the southern side of Mount La Montagna in Southern Italy, which has been monitored since the 1996s. The La Montagna aquifer is tectonically and litologically complex and deformed bedding controls the groundwater flow. Due to this aspect a parsimonious model should be more suitable than a complex model in spring discharge estimation. Thus, the DISHMET model incorporates monthly and annual precipitation only. The model is able to estimate sufficiently well the monthly fluctuations of groundwater discharge. DISHMET can be easily used to assess historical discharge, even when hydrological data is discontinuously available. The magnitude of this discharge is linked to the frequency and type of weather patterns transiting over the central Mediterranean area during the autumn and winter seasons. It is mainly related to the local precipitation that recharges the Mt. La Montagna aquifer. An analysis of antecedent rainfall and spring discharge reveal moderate to strong relationships.  相似文献   

15.
Qu  Jihong  Ren  Kun  Shi  Xiaoyu 《Water Resources Management》2021,35(3):1029-1045

Input variable selection plays a key role in data-driven streamflow forecasting models. In this study, we propose a two-stage wrapper model to drive one-month-ahead streamflow forecasting in the context of high-dimensional candidate input variables. Initially, the Boruta algorithm, a feature selection method, was applied to select all the relevant input variables for the streamflow series. Then, a novel binary grey wolf optimizer (BGWO)-regularized extreme learning machine (RELM) wrapper was derived. We carried out experiments on two US catchments with 132 candidate input variables, including local meteorological information, global climatic indices, and lags of the streamflow series. Furthermore, the sensitivities of the proposed model in terms of the optimal objective function were compared. The results indicate two important findings. First, the proposed model outperformed commonly used models in terms of four error evaluation criteria. Second, for the proposed model, the root mean square error is a more suitable criterion than the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) for the optimal objective function. These findings are of great reference value for developing ELM models for streamflow forecasting.

  相似文献   

16.
Monthly Rainfall Prediction Using Wavelet Neural Network Analysis   总被引:7,自引:1,他引:6  
Rainfall is one of the most significant parameters in a hydrological model. Several models have been developed to analyze and predict the rainfall forecast. In recent years, wavelet techniques have been widely applied to various water resources research because of their time-frequency representation. In this paper an attempt has been made to find an alternative method for rainfall prediction by combining the wavelet technique with Artificial Neural Network (ANN). The wavelet and ANN models have been applied to monthly rainfall data of Darjeeling rain gauge station. The calibration and validation performance of the models is evaluated with appropriate statistical methods. The results of monthly rainfall series modeling indicate that the performances of wavelet neural network models are more effective than the ANN models.  相似文献   

17.
The Soil Water Assessment Tool (SWAT) was applied to the 2,530 km2 Chaliyar river basin in Kerala, India to investigate the influence of scale on the model parameters. The study was carried out in this river basin at two scales. Parameters such as land use, soil type, topography and management practices are similar at these scales. The model was initially calibrated for streamflow and then validated. Critical parameters were the curve number (CN2), soil evaporation compensation factor (ESCO), available water holding capacity (SOL_AWC), average slope length (SLSUBBSN), and base flow alpha factor (ALPHA_BF). Using the optimized value of various parameters, stream flow was estimated from parts of the basin at two different scales—an area of 2,361.58 km2 and an area of 1,013.15 km2. The streamflow estimates at both these scales were statistically analysed by computing the coefficient of determination (R 2) and the Nash–Sutcliffe efficiency (ENS). Results indicate that the SWAT model could simulate streamflow at both scales reasonably well with very little difference between the observed and computed values. However, the results also indicate that there may be greater uncertainty in SWAT streamflow estimates as the size of the watershed increases.  相似文献   

18.
Water leakage in water distribution systems (WDSs) can bring various negative economic, environmental, and safety effects. Therefore, predicting water leakage is one of the most crucial tasks in water resource management; however, it is also one of the most challenging ones. Previous leakage-related studies have only focused on detecting existing leaks. This paper presents a novel model using expert structural expectation–maximisation, for predicting water leakage in WDSs. The model can take into account the uncertainty of leakage-related factors and balance the contribution of monitoring data and prior information in a Bayesian learning process to maximise leakage prediction accuracy. Moreover, the proposed method can indicate the most crucial factors affecting water leakage. The results of this study could benefit water utilities by aiding them in establishing an effective leakage control plan to minimise the risk of water leakage. A case study is presented to demonstrate the robustness and effectiveness of the proposed method.  相似文献   

19.
The hydrological processes are controlled by many factors such as topography, soil, climate and land management practices. These factors have been included in most hydrological models. This study develops a raster-based distributed hydrological model for catchment runoff simulation integrating flood polders regulation. The overland flow and channel flow are calculated by kinematic wave equations. A simple bucket method is used for outflow estimation of polders. The model was applied to Xitiaoxi catchment of Taihu Lake Basin. The accuracy of the model was satisfactory with Nash–Sutcliffe efficiencies of 0.82 during calibration period and 0.85 for validation at Hengtangcun station. The results at Fanjiacun station are slightly worse due to the tidal influence of Taihu Lake with high values of root mean square errors. A model sensitivity analysis has shown that the ratio of potential evapotranspiration to pan evaporation (K), the outflow coefficients of the freewater storage to groundwater (KG) and interflow (KSS) and the areal mean tension water capacity (WM) were the most sensitive parameters. The simulation results indicate that the polder systems could reduce the flood peaks. Additionally, it was confirmed that the proposed polders operation method improved the accuracy of discharge simulation slightly.  相似文献   

20.
基于投影寻踪分析与随机分析提出了一种新的耦合预测模型,运用投影寻踪技术将年内12个月径流由遗传算法优化得投影值,获取投影值与年径流的相关关系;建立年径流预测模型,由预测的年径流推算对应的投影值z^;寻找与z^最近邻的h个模式,由最近邻回归进行年内月径流展望预测。将耦合模型应用于宝珠寺和三峡水电站入库月径流展望预测,结果表明该耦合模型可行且预测效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号