Monthly streamflow forecasting is vital for managing water resources. Recently, numerous studies have explored and evidenced the potential of artificial intelligence (AI) models in hydrological forecasting. In this study, the feasibility of the convolutional neural network (CNN), a deep learning method, is explored for monthly streamflow forecasting. CNN can automatically extract critical features from numerous inputs with its convolution–pooling mechanism, which is a distinct advantage compared with other AI models. Hydrological and large-scale atmospheric circulation variables, including rainfall, streamflow, and atmospheric circulation factors are used to establish models and forecast streamflow for Huanren Reservoir and Xiangjiaba Hydropower Station, China. The artificial neural network (ANN) and extreme learning machine (ELM) with inputs identified based on cross-correlation and mutual information analyses are established for comparative analyses. The performances of these models are assessed with several statistical metrics and graphical evaluation methods. The results show that CNN outperforms ANN and ELM in all statistical measures. Moreover, CNN shows better stability in forecasting accuracy.
相似文献From a watershed management perspective, streamflow need to be predicted accurately using simple, reliable, and cost-effective tools. Present study demonstrates the first applications of a novel optimized deep-learning algorithm of a convolutional neural network (CNN) using BAT metaheuristic algorithm (i.e., CNN-BAT). Using the prediction powers of 4 well-known algorithms as benchmarks – multilayer perceptron (MLP-BAT), adaptive neuro-fuzzy inference system (ANFIS-BAT), support vector regression (SVR-BAT) and random forest (RF-BAT), the CNN-BAT model is tested for daily streamflow (Qt) prediction in the Korkorsar catchment in northern Iran. Fifteen years of daily rainfall (Rt) and streamflow data from 1997 to 2012 were collected and used for model development and evaluation. The dataset was divided into two groups for building and testing models. The correlation coefficient (r) between rainfall and streamflow with and without antecedent events (i.e., Rt-1, Rt-2, etc.) (as the input variables) and Qt (as the output variable) served as the basis for constructing different input scenarios. Several quantitative and visually-based evaluation metrics were used to validate and compare the model’s performance. The results indicate that Rt was the most effective input variable on Qt prediction and the integration of Rt, Rt-1, and Qt-1 was the optimal input combination. The evaluation metrics show that the CNN-BAT algorithm outperforms the other algorithms. The Friedman and Wilcoxon signed-rank test indicates that the prediction power of CNN-BAT algorithm is significantly/statistically different from the other developed algorithms.
相似文献We have developed a hybrid model that integrates chaos theory and an extreme learning machine with optimal parameters selected using an improved particle swarm optimization (ELM-IPSO) for monthly runoff analysis and prediction. Monthly streamflow data covering a period of 55 years from Daiying hydrological station in the Chaohe River basin in northern China were used for the study. The Lyapunov exponent, the correlation dimension method, and the nonlinear prediction method were used to characterize the streamflow data. With the time series of the reconstructed phase space matrix as input variables, an improved particle swarm optimization was used to improve the performance of the extreme learning machine. Finally, the optimal chaotic ensemble learning model for monthly streamflow prediction was obtained. The accuracy of the predictions of the streamflow series (linear correlation coefficient of about 0.89 and efficiency coefficient of about 0.78) indicate the validity of our approach for predicting streamflow dynamics. The developed method had a higher prediction accuracy compared with an auto-regression method, an artificial neural network, an extreme learning machine with genetic algorithm and with PSO algorithm, suggesting that ELM-IPSO is an efficient method for monthly streamflow prediction.
相似文献Reservoir inflow forecasting is extremely important for the management of a reservoir. In practice, accurate forecasting depends on the feature learning performance. To better address this issue, this paper proposed a feature-enhanced regression model (FER), which combined stack autoencoder (SAE) with long short-term memory (LSTM). This model had two constituents: (1) The SAE was constructed to learn a representation as close as possible to the original inputs. Through deep learning, the enhanced feature could be captured sufficiently. (2) The LSTM was established to simulate the mapping between the enhanced features and the outputs. Under recursive modeling, the patterns of correlation in the short term and dependence in the long term were considered comprehensively. To estimate the performance of the FER model, two historical daily discharge series were investigated, i.e., the Yangtze River in China and the Sava Dolinka River in Slovenia. The proposed model was compared with other machine-learning methods (i.e., the LSTM, SAE-based neural network, and traditional neural network). The results demonstrated that the proposed FER model yields the best forecasting performance in terms of six evaluation criteria. The proposed model integrates the deep learning and recursive modeling, and thus being beneficial to exploring complex features in the reservoir inflow forecasting. Moreover, for smaller catchments with significant torrential characteristics, more data are needed (e.g., at least 20 years) to effectively train the model and to obtain accurate flood-forecasting results.
相似文献Some previous studies have proved that prediction models using traditional overall decomposition sampling (ODS) strategy are unreasonable because the subseries obtained by the ODS strategy contain future information to be predicted. It is, therefore, necessary to put forward a new sampling strategy to fix this defect and also to improve the accuracy and reliability of decomposition-based models. In this paper, a stepwise decomposition sampling (SDS) strategy according to the practical prediction process is introduced. Moreover, an innovative input selection framework is proposed to build a strong decomposition-based monthly streamflow prediction model, in which sunspots and atmospheric circulation anomaly factors are employed as candidate input variables to enhance the prediction accuracy of monthly streamflow in addition to regular inputs such as precipitation and evaporation. Meanwhile, the partial correlation algorithm is employed to select optimal input variables from candidate input variables including precipitation, evaporation, sunspots, and atmospheric circulation anomaly factors. Four basins of the U.S. MOPEX project with various climate characteristics were selected as a case study. Results indicate that: (1) adding teleconnection factors into candidate input variables helps enhance the prediction accuracy of the support vector machine (SVM) model in predicting streamflow; (2) the innovative input selection framework helps to improve the prediction capacity of models whose candidate input variables interact with each other compared with traditional selection strategy; (3) the SDS strategy can effectively prevent future information from being included into input variables, which is an appropriate substitute of the ODS strategy in developing prediction models; (4) as for monthly streamflow, the hybrid variable model decomposition-support vector machine (VMD-SVM) models, using an innovative input selection framework and the SDS strategy, perform better than those which have not adopted this framework in all study areas. Generally, the findings of this study showed that the hybrid VMD-SVM model combining the SDS strategy and innovative input selection framework is a useful and powerful tool for practical hydrological prediction work in the context of climate change.
相似文献Input variable selection plays a key role in data-driven streamflow forecasting models. In this study, we propose a two-stage wrapper model to drive one-month-ahead streamflow forecasting in the context of high-dimensional candidate input variables. Initially, the Boruta algorithm, a feature selection method, was applied to select all the relevant input variables for the streamflow series. Then, a novel binary grey wolf optimizer (BGWO)-regularized extreme learning machine (RELM) wrapper was derived. We carried out experiments on two US catchments with 132 candidate input variables, including local meteorological information, global climatic indices, and lags of the streamflow series. Furthermore, the sensitivities of the proposed model in terms of the optimal objective function were compared. The results indicate two important findings. First, the proposed model outperformed commonly used models in terms of four error evaluation criteria. Second, for the proposed model, the root mean square error is a more suitable criterion than the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) for the optimal objective function. These findings are of great reference value for developing ELM models for streamflow forecasting.
相似文献Annual streamflow prediction is of great significance to the sustainable utilization of water resources, and predicting it accurately is challenging due to changes in streamflow have strong nonlinearity and uncertainty. To improve the prediction accuracy of annual streamflow, this study proposes a new hybrid prediction model based on extracting information from high-frequency components of streamflow. In the proposed model, the original streamflow data is decomposed by ensemble empirical mode decomposition (EEMD) into several intrinsic mode functions (IMFs) with different frequencies. Then, the dominant component and residual component are identified from the high-frequency components IMF1 and IMF2 using singular spectrum analysis (SSA), and the residual components are accumulated as a new component. Finally, all the components, including the new component that is not noise, are modelled by support vector machine (SVM), and the SVM is optimized by grey wolf optimizer (GWO). To analyse and verify the proposed model, the annual streamflow data are collected from the Liyuan River and Taolai River in the Heihe River Basin, and six models, autoregressive integrated moving average (ARIMA), cross validation (CV)-SVM, GWO-SVM, EEMD-ARIMA, EEMD-GWO-SVM and modified EEMD-GWO-SVM are considered as comparison models. The results indicate that the prediction performance of the proposed model is obviously better than that of other reference models, and extracting valuable information from high-frequency components can effectively improve annual streamflow prediction. Thus, the high-frequency components contained in the original streamflow series have an important impact on obtaining accurate streamflow prediction, and the proposed model makes full use of the high-frequency components and provides a reliable method for streamflow prediction.
相似文献