首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The work presents the results of a comprehensive modelling study of surface and groundwater resources in the Muzza-Bassa Lodigiana irrigation district, in Northern Italy. It assesses the impact of changes in land use and irrigation water availability on the distribution of crop water consumption in space and time, as well as on the groundwater resources. A distributed, integrated surface water-groundwater simulation system was implemented and applied to the study area. The system is based on the coupling of a conceptual vadose zone model with the groundwater model MODFLOW. To assess the impact of land use and irrigation water availability on water deficit for crops as well as on groundwater system in the area, a number of management scenarios were identified and compared with a base scenario, reflecting the present conditions. Changes in land use may alter significantly both total crop water requirement and aquifer recharge. Water supply is sufficient to meet demand under present conditions and, from the crop water use viewpoint, a reduction of water availability has a positive effect on the overall irrigation system efficiency; however, evapotranspiration deficit increases, concentrated in July and August, when it may be critical for maize crops.  相似文献   

2.
Water supply reliability in Southern California is facing serious problems because of reduction in the availability of water from the State Water Project and Colorado River, drought, and growing concerns about environmental restoration. Groundwater sources supply more than fifty-five percent of domestic demands in the Western Riverside County. Western Municipal Water District is planning to increase water supply reliability by expanding the Arlington Desalter production which requires additional groundwater pumping from the Arlington Basin. Western was concerned that increasing groundwater pumping will cause excessive decline in groundwater levels, leading to decreased yields at existing Desalter wells. Three-dimensional groundwater flow model was developed for the Arlington Basin to investigate different water management strategies. Five groundwater management scenarios were run for a 30-year time period. The five model runs were used to determine the feasibility of the Arlington aquifer system to supply groundwater to the Arlington Desalter over the 30-year life of the facility. Model simulation results showed that long-term groundwater pumping from the existing Desalter wells is not sustainable without artificial recharge. However two of the modeling scenarios which incorporated a combination of artificial recharge and new production wells, were shown to meet the increased Desalter yield requirements as well as minimize adverse impacts.  相似文献   

3.
针对华北平原地下水利用中存在的问题,采用分布式水文MIKE SHE模型,考虑人类活动(农业节水措施和南水北调工程)和气候变化等变化环境的影响,通过设定4大类情景(每类情景中均设定了3类气候变化子情景)模拟了2019-2028年华北平原地下水的利用状况.结果 表明:农业节水措施和南水北调工程等人类活动对华北平原地下水水位...  相似文献   

4.
Recently, many studies have investigated the effect of climate change on groundwater resources in semiarid and arid areas and have shown adverse effects on groundwater recharge and water level. However, only a few studies have shown suitable strategies for reducing these adverse effects. In this study, climate conditions were predicted for the future period of 2020–2044, under the emission scenarios of RCP2.6, RCP4.5, and RCP8.5, for Isfahan–Borkhar aquifer, Isfahan, Iran, using MODFLOW‐2000 (MODFLOW is United States Geological Survey product). Results showed that the average groundwater level of the aquifer would decrease to 13, 15, and 16 m in 2012 to 2044 approximately under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Then, three groundwater sustainability management scenarios were defined that included 10%, 30%, and 50% reduction in groundwater extraction. These strategies simulated the reduced negative effects of climate change on the aquifer. The results showed that decreases in water withdrawal rates of 10%, 30%, and 50% under RCP8.5 scenario (critical scenario) could decrease the mean groundwater level by 14, 11, and 7 m, respectively. The main result of the study showed that 50% reduction in groundwater withdrawal may increase the groundwater levels significantly in order to restore the aquifer sustainability in the study area. In this study, with assuming that the current harvest of wells in the future period is constant, so the results of studies showed that for the aquifer's sustainability management, the water abstraction from the aquifer should reduce up to 50% of the existing wells. Changing the irrigation method from surface to subdroplet irrigation plays an important role in reducing the withdrawal from the aquifer. The results of a study in Iran have shown that the change in the irrigation method from surface to subdroplet irrigation causes a 40% reduction in water use for agriculture.  相似文献   

5.
This paper presents a study for finding the optimal management plan of an overexploited aquifer under global climate change. The study area is the aquifer of the basin of Lake Karla, located in the eastern part of Thessaly in Greece. An optimization method has been used to evaluate the optimum volume of water that can be extracted from the aquifer and the optimum position of the wells with the objective of water table rise to a desirable sustainable level, taking into consideration the climate change forcing. The modelling system consists of a series of interlinked models: a hydrological, a lake-aquifer, a reservoir operation, a groundwater, and an optimization model. The climate change forcing on precipitation and temperature has been evaluated using the outputs of Canadian Centre for Climate Model Analysis General Circulation Model (CGCMa2) and a hybrid downscaling method which combines a multiple regression (MLR) model and a timeseries model for two socioeconomic emissions scenarios. The results of this study show that climate change plays an important role, as it affects the optimum volume of the extracted groundwater and the position of the irrigation wells.  相似文献   

6.
The Walla Walla Basin, in Eastern Oregon and Washington, USA, faces challenges in sustaining an agricultural water supply while maintaining sufficient flow in the Walla Walla River for endangered fish populations. Minimum summer river flow of 0.71 m3/s is required, forcing irrigators to substitute groundwater from a declining aquifer for lost surface water diversion. Managed Aquifer Recharge (MAR) was initiated in 2004 attempting to restore groundwater levels and improve agricultural viability. The Integrated Water Flow Model (IWFM) was used to compute surface and shallow groundwater conditions in the basin under water management scenarios with varying water use, MAR, and allowable minimum river flow. A mean increase of 1.5 m of groundwater elevation, or 1.5 % of total aquifer storage, was predicted over the model area when comparing maximum MAR and no MAR scenarios where minimum river flow was increased from current level. When comparing these scenarios a 53 % greater summer flow in springs was predicted with the use of MAR. Results indicate MAR can supplement irrigation supply while stabilizing groundwater levels and increasing summer streamflow. Potential increase in long-term groundwater storage is limited by the high transmissivity of the aquifer material. Increased MAR caused increased groundwater discharge through springs and stream beds, benefiting aquatic habitat rather than building long-term aquifer storage. Judicious siting of recharge basins may be a means of increasing the effectiveness of MAR in the basin.  相似文献   

7.
Climate change is one of the main driving forces that affect both the temporal and spatial variability of water availability. Besides climatic change, current demographic trends, economic development and related land use changes have direct impact on increasing demand for freshwater resources. Taken together, the net effect of these supply and demand changes has led to a growing water scarcity in major international river basins. The Brahmaputra River Basin is one of the most vulnerable areas in the world, as it is subject to combined effect of climate change and development pressures. A robust assessment of water scarcity considering both climatic and socio-economic changes is therefore vital for policy makers of the basin. In this study, we analyze future water scarcity of the Brahmaputra Basin in a geographically and temporally detailed manner, incorporating several novel approaches: (i) the application of consistent set of scenarios to estimate future water scarcity; (ii) estimation of water demand in terms of both water withdrawals and consumptive water use; (iii) comparison of water demand and availability on different temporal scales i.e., yearly, seasonal and monthly rather than only annual basis. (iv) assessment of groundwater recharge affected by climate change together with future demands for groundwater abstraction. Although the Brahmaputra Basin is one of the water abundant regions of the world, our analysis illustrates that during dry season water scarcity for the Basin will become more severe in the coming decades, which requires special attention to the decision makers of the authority.  相似文献   

8.
The joint effect of changes in climate and land use on the future availability of water resources was assessed under the SRES A1B and A2 climate scenarios as well as five land use scenarios for the 2080–2100 time-frame in an Italian coastal watershed. The study area is a small coastal polder (100 km2) characterized by irrigated agriculture, urban expansion, drainage, quarrying and sensitivity to salt-water intrusion. The hydroclimatic budget and the GALDIT index have been computed for assessing water resources availability and groundwater vulnerability to salinization, respectively. The methodology developed is integrated into a tool based on Excel?, which supported the development of scenarios in participatory processes. The conclusions emerged from the analysis are the following: (1) climate change is more effective than land use change in controlling future freshwater availability and amplifies the imbalance between winter surplus and summer deficits, (2) freshwater availability in the summer will likely be affected by an increase in evaporation from open water surfaces due to increased temperature, whereas winter surplus would increase, (3) the vulnerability of the coastal aquifer to salinization will probably moderately increase but an inherent limitation of the GALDIT index to land use change parameters prevents a sound assessment. Strategies that may be proposed to administrators and stakeholders are based on increasing storage of seasonal water surplus.  相似文献   

9.
Growing water demand across the world is increasing the stress on river ecosystems, causing concern for both biodiversity and people. River‐specific environmental flow assessments cannot keep pace with the rate and geographic extent of water development. Society needs methods to assess ecological impacts of flow management at broad scales so that appropriate regional management can be implemented. To meet this need in Colorado, USA, we developed a Watershed Flow Evaluation Tool (WFET) to estimate flow‐related ecological risk at a regional scale. The WFET entails four steps: (i) modelling natural and developed daily streamflows; (ii) analysing the resulting flow time series; (iii) describing relationships between river attributes and flow metrics (flow–ecology relationships); and (iv) mapping of flow‐related risk for trout, native warm‐water species and riparian plant communities. We developed this tool in two watersheds with differing geomorphic settings and data availability. In one of the two watersheds, the WFET was successfully implemented to assess ecological risk across the 3400‐km2 watershed, providing consistent watershed‐wide information on flow‐related risk. In the other watershed, active channel change and limited data precluded a successful application. In Colorado, the WFET will be used to evaluate the risk of impacts on river ecosystems under future climate change and water development scenarios (e.g. for energy development or municipal water supply). As water continues to be developed for people, the WFET and similar methods will provide a cost‐effective means to evaluate and balance ecosystem needs at large scales. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Climate change and other future developments can influence the availability of groundwater resources for drinking water. The uncertainty of the projected impact is a challenge given the urgency to decide on adaptation measures to secure the drinking water supply. Improved understanding on how climate change affects the groundwater system is necessary to develop adaptation strategies. AZURE is used, a detailed, well-calibrated hydrological model to study the projected impact of climate change scenarios on the large Veluwe aquifer in the Netherlands. The Veluwe area is an important source of drinking water. However, some existing groundwater extractions in the area affect nearby groundwater-dependent ecosystems. Redistribution of the licensed extraction volumes of these sites is considered to reduce the impact on these ecosystems. The projected impact of climate change and redistribution to groundwater levels is studied. The research shows that in a slowly responding large aquifer the projected climate change may cause rising groundwater levels despite the projected increase in summer dryness. The results indicate that this impact may exceed the impact of redistribution of extraction volumes. In addition, it is shown that the combined effect strongly depends on local conditions, thus highlighting the need for high-resolution modelling.  相似文献   

11.
Abstract

Enhanced management of water systems requires knowledge of the amounts of water availability on time scales of hours to decades. Managers of water systems can use the information from combined hydro-meteorological/hydrologic prediction models to take appropriate actions in a realtime basis and also to plan the development of both structural and non-structural measures. Cooperation between the meteorological and hydrological communities is leading to improved models, from flash floods to climate change scenarios but there is a continuing need for dialogue to understand the needs and capabilities of each community. This paper reviews the role of prediction and discusses different kinds of predictions: deterministic, probabilistic, and scenarios based on external forcing. An important issue is the factoring in of the uncertainties of predictions into a risk management approach to water systems management.  相似文献   

12.
In Benin, annual water availability per capita far exceeds the critical threshold of about 1,700 m3, but during the dry season, water scarcity occurs at the local scale. By modeling the water balance of the Ouémé–Bonou catchment with WEAP (Water Evaluation and Planning System), this study aimed at analyzing Benin’s future water situation under different scenarios of socio-economic development and climate change until 2025. The results show that the pressure on Benin’s water resources will increase, leading to greater competition for surface water. Furthermore, financial and technological constraints hinder a satisfactory development, and exploration of groundwater and reservoir resources. However, improvements are most needed, especially in rural areas. Decreasing inflows and groundwater recharge due to climate change aggravate this situation. Even though there are uncertainties and constraints concerning the model and input data, this study shows that the WEAP results offer a solid basis to assist planners in developing recommendations for future water resource management by revealing hot spots of action.  相似文献   

13.
Groundwater is the main water resource in many semi-arid coastal regions and water demand, especially in summer months, can be very high. Groundwater withdrawal for meeting this demand often causes seawater intrusion and degradation of water quality of coastal aquifers. In order to satisfy demand, a combined management plan is proposed and is under consideration for the island of Santorini. The plan involves: (1) desalinization (if needed) of pumped water to a potable level using reverse osmosis and (2) injection into the aquifer of biologically-treated waste water. The management plan is formulated in a multi-objective, optimization framework, where simultaneous minimization of economic and environmental costs is desired, subject to a constraint so that cleaned water satisfies demand. The decision variables concern the well locations and the corresponding pumping and recharging rates. The problem is solved using a computationally efficient, multi-objective, genetic algorithm (NSGAII). The constrained multi-objective, optimization problem is transformed to an unconstrained one using a penalty function proportional to constraint violation. This extends the definition of the objective function outside the domain of feasibility. The impact of prolonged droughts on coastal aquifers is investigated by assuming various scenarios of reduced groundwater recharge. Water flow and quality in the coastal aquifer is simulated using a three-dimensional, variable density, finite difference model (SEAWAT). The method is initially applied to a test aquifer and the trade-off curves (Pareto fronts) are determinedl for each drought scenario. The trade-off curves indicate an increase on the economic and environmental cost as groundwater recharge reduces due to climate change.  相似文献   

14.
Lack of sufficient quantities of water in the UAE is one of the major problems facing sustainable development. The arid climate of the country plays a significant role in the water resources availability. Rainfall, which is a main source of recharge for different water resources, such as surface water and groundwater, is scanty and extremely irregular in time and space. Evaporation, which reduces the amount of surface water, is high. Heavy pumping of groundwater has deteriorated groundwater levels. Desalination plants have been launched in different parts of the country to meet increasing water demands due to increasing population and economical development in the country. The continued reduction of water storage will hinder the development in the country. To avoid this problem, integrated water resources management (IWRM) strategy should be implemented. Searching for new non-conventional resources is also essential. This paper aims to assess the conventional and non-conventional water resources in the UAE and estimates the past and future water demands. In addition, this article focuses on future water strategy scenarios and plans.  相似文献   

15.
GIS-Based Groundwater Management Model for Western Nile Delta   总被引:7,自引:3,他引:4  
The limited availability of renewable fresh water is a major constraint on future agriculture and urban development in Egypt. The main water resource that Egypt has been depending on is the River Nile. Nowadays, the role of groundwater is steadily increasing and will cover 20% of the total water supply in the coming decades especially in the reclaimed areas along the desert fringes of the Nile Delta and Valley. Abstraction from groundwater in Egypt is dynamic in nature as it grows rapidly with the expansion of irrigation activities, industrialization, and urbanization. One of these areas is the Western Nile Delta in which the groundwater is exploited in many localities. To avoid the deterioration of the aquifer system in this area, an efficient integrated and sustainable management plan for groundwater resources is needed. Efficient integrated and sustainable management of water resources relies on a comprehensive database that represents the characteristics of the aquifer system and modeling tools to achieve the impacts of decision alternatives. In this paper, a GIS-based model has been developed for the aquifer system of the Western Nile Delta. The GIS provides the utilization of analytical tools and visualization capabilities for pre-and post-processing information involved in groundwater modeling for the study area. The developed model was calibrated for steady state and transient conditions against the historical groundwater heads observed during the last 20 yr. The calibrated model was used to evaluate groundwater potentiality and to test two alternative management scenarios for conserving the aquifer system in Western Nile Delta. In the first scenario, reducing the surface water inflow while increasing the annual abstraction from groundwater by about 450 million m3 and improving the irrigation system could increase the net aquifer recharge by about 5.7% and reduce the aquifer potentiality by about 91%. Constructing a new canal as a second management scenario could increase the annual aquifer potentiality by about 23%. The GIS-based model has been proven to be an efficient tool for formulating integrated and sustainable management plan.  相似文献   

16.
Groundwater Protection and Management Strategy in Jordan   总被引:1,自引:1,他引:0  
Groundwater resources are essential in Jordan that require careful planning and management in order to sustain human socio-economic development and various ecosystems. However these vital resources are under the threat of degradation by both mismanagement and over-exploitation that leads to contamination and decline of water levels. A new by-law, which specifically addresses pollution prevention and protection of water resources used for domestic purposes through appropriate land use restriction and zoning, is currently under preparation in Jordan. This law (i.e., Groundwater Management Policy) addresses the management of groundwater resources including development, protection, management, and reducing abstraction for each renewable aquifer to the sustainable rate (i.e., safe yield). Groundwater vulnerability mapping and delineation of groundwater protection zones were implemented in different areas in Jordan in cooperation between the German Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) company and Ministry of Water and Irrigation. This paper presents the status of groundwater resources in Jordan and their major issues. It attempts to discuss the groundwater vulnerability and protection strategy and the impacts of over-exploitation on the groundwater aquifers in an integrated water resources management perspective.  相似文献   

17.
The use of regional climate model (RCM) outputs has been getting due attention in most European River basins because of the availability of large number of the models and modelling institutes in the continent; and the relative robustness the models to represent local climate. This paper presents the hydrological responses to climate change in the Upper Tiber River basin (Central Italy) using bias corrected daily regional climate model outputs. The hydrological analysis include both control (1961–1990) and future (2071–2100) climate scenarios. Three RCMs (RegCM, RCAO, and PROMES) that were forced by the same lateral boundary condition under A2 and B2 emission scenarios were used in this study. The projected climate variables from bias corrected models have shown that the precipitation and temperature tends to decrease and increase in summer season, respectively. The impact of climate change on the hydrology of the river basin was predicted using physically based Soil and Water Assessment Tool (SWAT). The SWAT model was first calibrated and validated using observed datasets at the sub-basin outlet. A total of six simulations were performed under each scenario and RCM combinations. The simulated result indicated that there is a significant annual and seasonal change in the hydrological water balance components. The annual water balance of the study area showed a decrease in surface runoff, aquifer recharge and total basin water yield under A2 scenario for RegCM and RCAO RCMs and an increase in PROMES RCM under B2 scenario. The overall hydrological behaviour of the basin indicated that there will be a reduction of water yield in the basin due to projected changes in temperature and precipitation. The changes in all other hydrological components are in agreement with the change in projected precipitation and temperature.  相似文献   

18.
Groundwater resources are steadily subjected to increasing water demands. The aquifers are considered as the most accessible source of fresh water. In recent years, they have been faced with severe water withdrawal in arid and semi-arid countries like Iran and thus some aquifers was considered as forbidden aquifers that it means the water withdrawal from these aquifers is unauthorized. Given a critical situation, groundwater resources management in the form of tools such as monitoring the level of the aquifers and developing the restoring scenarios is essential. Therefore, for this purpose, a framework has been developed based on prediction of groundwater level using Bayesian Networks (BNs) model. Furthermore, Multi Criteria Decision Making methods (MCDM) techniques proposed and employed for ranking of proposed groundwater management scenarios. This framework was evaluated for restoring the Birjand aquifer in Iran in different hydrological conditions. A probabilistic Dynamic BN was proposed for groundwater level prediction under uncertainties. After analyzing the obtained results, the applicable short term scenarios for groundwater management as well as appropriate economic, social and technical criteria were defined for decision making procedure. Then, using elicitation of decision makers’ opinions on the relative importance and performance of criteria, SAW, TOPSIS and PROMETHEE-II techniques were applied to rank the scenarios and the obtained results were aggregated by Borda method for final ranking of the scenarios. Lastly, the final results demonstrates the capability of the proposed framework for groundwater resources planning and management which can be employed for reducing the risk of aquifer level declining.  相似文献   

19.
A Water Management Support System for Amman Zarqa Basin in Jordan   总被引:1,自引:1,他引:0  
A Water Management Support System for Amman Zarqa Basin in Jordan has been developed. The water management support system employs the Water Evaluation and Planning system (WEAP). The water resources and demands in the basin were modeled as a network of supply and demand nodes connected by links. The model was calibrated for the year 2005 data and then validated for the year 2006 data. Validation results showed good agreement between calculated and measured inflows to wastewater treatment plants in the basin. The model was run for the year 2005 data as well as for four scenarios for the year 2025 which are Business As Usual (BAU) scenario, Advanced Wastewater Treatment (AWWT) scenario, the Red Sea, Dead Sea Channel (RSDSC) scenario and the optimistic scenario. The BAU scenario assumes that water use trends for the year 2025 follows predictable trends, the implementation of the disi project and the Wehda dam are main components of the BAU scenario. The AWWT scenario assumes that the effluent of As Samra wastewater treatment plant is treated to a level where it can be used for unrestricted irrigation within the basin and in the highlands. The main component of the RSDSC scenario is the implementation of the RSDSC project. The optimistic scenario combines both the AWWT scenario and the RSDSC scenario. The AWWT scenario, the RSDSC scenario, and the optimistic scenario are child scenarios of the BAU scenario. The results showed that neither domestic demand nor agricultural demand is met for the year 2005. The results also showed that domestic and industrial demands can be satisfied for all the considered scenarios by proper management of the available resources. However, agricultural demand can’t be satisfied for the business as usual scenario.  相似文献   

20.
A three-dimensional numerical model for flow and solute transport was used for the management of the Salalah aquifer. The model calibration procedures consisted of calibrating the aquifer system hydraulic parameters by history matching under steady and transient conditions. The history of input and output of the aquifer were reconstructed in a transient calibration from 1993 to 2005. Predictive simulation of the aquifer was carried out under transient conditions to predict the future demand of groundwater supply for the next 15 years. A baseline scenario was worked out to obtain the piezometric surface and salinity distribution for the “business as usual” conditions of the aquifer. The “business as usual” scenario was predicted and simulated for the period 2006 until 2020. The effectiveness of seven management options was proposed and assessed for comparison with the “business as usual” conditions. The established simulation model was used to predict the distribution of the piezometric surface, salinity distribution, and mass balance under the proposed scenarios for the prediction period 2006–2020. The scenarios were: (1) relocate Garziz and MAF farms far from the freshwater zone, (2) suspend the abstraction of grass production for 4 months a year, (3) changes in agricultural and irrigation system patterns, (4) establish a desalination plant, (5) combined scenario (1 + 4), (6) combined scenario (1 + 3), and (7) combining all scenarios (1 + 2 + 3 + 4). The result of the simulation shows that the best effective option in terms of aquifer groundwater levels is the fifth proposed scenario and the sixth proposed scenario is the best effective option in terms of aquifer groundwater salinity situation during the next 15 years. This project suggested the application of scenario 6 as it is environmentally sound in terms of sustainable management. A prediction has been made which shows that further actions have to be taken within the next two decades to ensure continuity of the municipal water supply. The management scenarios are examined in the case of the Salalah coastal aquifer using groundwater simulation, which can also be applied to other regions with similar conditions. The established model is considered a reasonable representation of the physical conditions of the Salalah plain aquifer, and can be used as a tool by the water and environmental authorities in the management of the groundwater in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号