首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
吴非  张建林 《半导体光电》2023,44(3):422-428
基于孪生网络的跟踪器受限于孪生网络跟踪框架固有的跟踪机制和搜索区域选择机制,当目标处在被遮挡、快速运动和出视野等困难场景下时,如何稳定、鲁棒地进行目标跟踪始终是孪生网络跟踪器亟需解决的问题。为此,文章提出一种结合光流的孪生区域提名网络目标跟踪算法(GOF-SiamRPN)。通过全局光流对目标的运动趋势信息进行补充,该方法可以有效地解决在这些困难场景下的跟踪问题。在VOT2019和UAV123上的实验结果表明,相比基准方法,该算法分别取得了2.0%和1.8%的性能提升。与其他先进的跟踪器相比,该算法也取得了有竞争力的跟踪效果。  相似文献   

2.

针对机器人在家庭环境下的目标检测问题,该文提出一种基于动作注意策略的树形双深度Q网络(TDDQN)目标候选区域提取的方法,该方法将双深度Q网络(DDQN)的方法与树结构的方法相结合,通过执行改变检测框的动作以使目标逐渐集中在检测框内。首先采用DDQN方法在执行较少的动作后选择出当前状态的最佳动作,获取符合条件的候选区域。然后根据执行所选择动作之后所得到的状态重复执行上述过程,以此构成树结构的多条“最佳”路径。最后采用非极大值抑制的方法从多个符合条件的候选区域选择出最佳候选区域。在Pascal VOC2007以及Pascal VOC2012上的实验结果表明,在不同数量的候选区域、不同阈值的IoU和不同大小以及不同种类对象的实验条件下,所提方法较其他方法都有着更好的检测性能,可以较好地实现目标检测。

  相似文献   

3.
SAR图像多尺度目标检测能够实现大场景SAR图像中关键目标的定位与识别,是SAR图像解译的关键技术之一.然而针对尺寸相差较大的SAR目标的同时检测,即跨尺度目标检测问题,现有目标检测方法难以实现.该文提出一种基于特征转移金字塔网络(FTPN)的SAR图像跨尺度目标检测方法.在特征提取阶段采用特征转移方法,实现各层特征图...  相似文献   

4.
目标检测的区域编码和区域逻辑运算   总被引:3,自引:0,他引:3  
聂守平  刘峰  王弘 《中国激光》2004,31(2):85-189
研究了图像逐行扫描、逐行编码的方法,提出了存储区域信息的新的数据结构,在传统的图像逻辑运算的基础上,研究了区域逻辑运算,并将区域编码和区域逻辑运算应用于目标检测,并给出了实验结果。  相似文献   

5.
运动目标检测和目标区域的估算   总被引:1,自引:0,他引:1  
于雪莲  宋洋  刘晓红 《通信技术》2011,44(5):119-121,145
采用三帧差分法检测静止背景下视频序列中的运动目标,得到运动目标的二值图像。并利用矩方法对运动目标的几何特征进行了研究,在此基础上提出了一种运动目标的质心和最小外接矩形的估算算法,并对该算法进行了改进,使之适合噪声干扰比较大的情况。该算法可实现运动目标进行快速准确定位和区域估算,实验表明该算法的时间复杂度和空间复杂度低,效果良好,且具有很好的鲁棒性。  相似文献   

6.
本文旨在研究一种基于深度学习的RGBD图像协同显著目标检测模型。首先,本文构建了多分支的编码器结构,有效地提取RGBD图像的深层卷积特征;然后,使用多模态特征融合模块充分融合来自编码器的深层特征;最后,通过基于残差基本块的解码器来预测得到显著性图。此外,本文以深层次监督的方式对整个网络进行约束优化。在两个公开数据集上的测试结果表明,所提模型在预测精度上优于当前6种主流模型,这其中我们的显著性图呈现出更精确的边缘细节。   相似文献   

7.
邝楚文  何望 《红外技术》2022,44(9):912-919
针对现有基于可见光的目标检测算法存在的不足,提出了一种红外和可见光图像融合的目标检测方法。该方法将深度可分离卷积与残差结构相结合,构建并列的高效率特征提取网络,分别提取红外和可见光图像目标信息;同时,引入自适应特征融合模块以自主学习的方式融合两支路对应尺度的特征,使两类图像信息互补;最后,利用特征金字塔结构将深层特征逐层与浅层融合,提升网络对不同尺度目标的检测精度。实验结果表明,所提网络能够充分融合红外和可见光图像中的有效信息,并在保障精度与效率的前提下实现目标识别与定位;同时,在实际变电站设备检测场景中,该网络也体现出较好的鲁棒性和泛化能力,可以高效完成检测任务。  相似文献   

8.
现有的大部分基于扩散理论的显著性物体检测方法只用了图像的底层特征来构造图和扩散矩阵,并且忽视了显著性物体在图像边缘的可能性。针对此,该文提出一种基于图像的多层特征的扩散方法进行显著性物体检测。首先,采用由背景先验、颜色先验、位置先验组成的高层先验方法选取种子节点。其次,将选取的种子节点的显著性信息通过由图像的底层特征构建的扩散矩阵传播到每个节点得到初始显著图,并将其作为图像的中层特征。然后结合图像的高层特征分别构建扩散矩阵,再次运用扩散方法分别获得中层显著图、高层显著图。最后,非线性融合中层显著图和高层显著图得到最终显著图。该算法在3个数据集MSRA10K,DUT-OMRON和ECSSD上,用3种量化评价指标与现有4种流行算法进行实验结果对比,均取得最好的效果。  相似文献   

9.
目标检测作为计算机视觉的一个重要研究方向,近年来在算法性能上有了突破性进展.为了更好的提升两阶段目标检测的精度与速度性能,提出了一种基于迁移学习方法的融合深度扩张卷积网络和轻量化网络的检测模型.首先用扩张卷积网络替换主干网络中部分的卷积残差模块——深度扩张卷积网络D_dNet-65;然后对预训练后的特征图进行压缩操作,并增加一个81类的全连接层以确保正常进行分类和回归操作——轻量化网络结构;最后,引入迁移学习方法并融合D_dNet和轻量化网络结构,通过迁移实现模型的进一步优化.实验在典型的数据集MSCOCO以及VOC07上进行.实验评估表明,本文提出的方法具有良好的有效性和可扩展性.  相似文献   

10.
显著物体检测目前在计算机视觉领域中非常重要,如何处理不同尺度的特征信息成为能否获得优秀预测结果的关键。该文有两个主要贡献,一是提出一种用于显著目标检测的特征排列方法,基于自编码结构的卷积神经网络模型,利用尺度表征的概念将特征图进行分组和重排列,以获得一个更加泛化的显著目标检测模型和更加准确的显著目标预测结果;二是在输出部分利用了双重卷积残差和FReLU激活函数,抓取更全面的像素信息,完成空间信息上的激活。利用两种算法的特点融合作用于模型的学习训练。实验结果表明,将该文算法与主流的显著目标检测算法进行比较,在所有评测指标上都达到了最优的效果。  相似文献   

11.
陈禹蒲  马晓川  李璇 《信号处理》2022,38(11):2359-2371
利用侧扫声呐图像来探查海底目标对海洋资源开采和海上军事防护都有重大意义。目前人为提取图像特征进行目标检测的传统机器学习方法逐渐被深度学习取代。深度学习技术在降低算法复杂度的同时提高图像目标检测效率,极大地推动了目标检测技术地发展。将深度学习检测算法应用到侧扫声呐图像目标检测领域时,锚框作为目标检测网络中较为重要的先验信息会影响最终的检测性能,考虑到声呐数据集的真实目标框与网络设定的锚框未必贴合的问题,本文在YOLOv3的基础上对锚框进行了优化,给出了一种能够获取有效先验锚框的策略。首先使用K-Means算法对真实目标框进行聚类,获得比较贴合于声呐数据集的锚框,然后设计了一种超参数锚框映射关系对聚类后的锚框进行拉伸变换,这样获得的锚框既包含了声呐数据集的目标框信息,也能利用到YOLOv3的多尺度特性。实验结果表明,所提锚框优化策略能够让YOLOv3网络获得更优的检测性能,适用于侧扫声呐图像的目标检测问题。  相似文献   

12.
冯烨  张索非  吴晓富 《信号处理》2020,36(5):756-762
在基于深度卷积神经网络的目标检测方法中,模型的参数量动辄数十兆字节,在计算资源有限的移动终端等边缘设备中部署这样的大模型比较困难。为了解决这个问题,本文在Single Shot MultiBox Detector(SSD)的基础上联合轻量化网络设计和参数量化两种技术来实现网络模型的轻量化。首先,基于ResNet50和MobileNet我们重新设计了SSD目标检测框架,并训练了一个全精度参数模型。然后,在全精度参数模型的基础上,采取逐块量化的策略将特征提取层中卷积层的参数精度降低到三值(零和正负一)。实验结果表明,本文提出的联合方案在Pascal VOC2007数据集上测试能够达到72.54%的mAP,和其他业界领先的轻量级目标检测方法相比检测精度更高且能使模型占用的内存空间更小。   相似文献   

13.
A method of 'network filtering' has been proposed recently to detect the effects of certain external perturbations on the interacting members in a network. However, with large networks, the goal of detection seems a priori difficult to achieve, especially since the number of observations available often is much smaller than the number of variables describing the effects of the underlying network. Under the assumption that the network possesses a certain sparsity property, we provide a formal characterization of the accuracy with which the external effects can be detected, using a network filtering system that combines Lasso regression in a sparse simultaneous equation model with simple residual analysis. We explore the implications of the technical conditions underlying our characterization, in the context of various network topologies, and we illustrate our method using simulated data.  相似文献   

14.
相对于传统人工神经网络(ANN),脉冲神经网络(SNN)具有生物可解释性、计算效率高等优势。然而,对于目标检测任务,SNN存在训练难度大、精度低等问题。针对上述问题,该文提出一种基于动态阈值LIF神经元(DT-LIF)与单镜头多盒检测器(SSD)的SNN目标检测方法。首先,设计了一种DT-LIF神经元模型,该模型可根据累积的膜电位动态调整神经元的阈值,以驱动深层网络的脉冲活动,提高推理速度。同时,以DT-LIF神经元为基元,构建了一种基于SSD的混合SNN。该网络以脉冲视觉几何群网络(Spiking VGG)和脉冲密集连接卷积网络(Spiking DenseNet)为主干(Backbone),具有由批处理归一化(BN)层、脉冲卷积(SC)层与DT-LIF神经元构成的3个额外层和SSD预测框头(Head)。实验结果表明,相对于LIF神经元网络,DT-LIF神经元网络在Prophesee GEN1数据集上的目标检测精度提高了25.2%。对比AsyNet算法,所提方法的目标检测精度提高了17.9%。  相似文献   

15.
可见光和红外图像具有互补特性,融合可产生更好的召回率,但现有方法融合后总会导致精度下降。这项研究提出了一种在特征级进行融合检测行人目标的方法:①提取前景目标特征的极大稳定极值区域Maximally Stable Extremal Regions(MSERs),计算红外图像MSERs稠密度和相似度特性,并根据此特性分类MSERs。②搜索匹配可见光图像中的相似MSERs区域,定位前景目标。③融合提取红外与可见光图像中的相似匹配 MSERs 区域,完成运动目标轮廓提取。该方法融合可见光图像信息,能有效滤除背景物,辅助定位在红外图像中检测的前景目标,并补充仅利用红外图像提取前景目标的缺失部分。已使用公共数据库对该方法进行测试,并与早期融合方法进行比较,能获得更好的召回率,同时融合后准确率不会下降。不需要对背景建模,因此比以往算法计算上更高效,更简单,单帧检测的效果也能达到实时处理要求。  相似文献   

16.
宁大海  郑晟 《红外技术》2023,45(3):282-291
为了提高可见光和红外图像决策级融合目标检测算法的性能,提出了一种基于模型可靠性的决策级融合策略。首先采取图像预处理技术提高红外图像的整体质量,之后对可见光与热红外目标检测模型分别进行训练测试,根据模型测试结果得到融合策略所需参数,依据所提出的融合策略对模型检测结果进行融合,得到最后的融合检测结果。实验结果表明,相比于单一目标检测模型的检测结果,所采用的融合算法在白天的漏检率比可见光检测模型降低了8.16%,夜间漏检率比红外检测模型降低了9.85%。  相似文献   

17.
针对目前算法对遥感图像中背景复杂、目标小而密集的复杂场景下的目标检测精度低的问题,提出了一种基于YOLOv3的改进算法,在YOLOv3的基础上,结合了密集连接网络,利用密集连接块来提取深层特征,增强特征传播,同时引入Distance-IoU(DIoU) loss作为坐标预测的损失函数,使边界框的定位更加准确,此外针对目...  相似文献   

18.

当前的显著性目标检测算法在准确性和高效性两方面不能实现良好的平衡,针对这一问题,该文提出了一种新的平衡准确性以及高效性的显著性目标检测深度卷积网络模型。首先,通过将传统的卷积替换为可分解卷积,大幅减少计算量,提高检测效率。其次,为了更好地利用不同尺度的特征,采用了稀疏跨层连接结构及多尺度融合结构来提高模型检测精度。广泛的评价表明,与现有方法相比,所提的算法在效率和精度上都取得了领先的性能。

  相似文献   

19.
合成孔径雷达(Synthetic Aperture Radar, SAR)由于其具备全天时、全天候的工作特点,使其在海洋环境监测、海洋资源调查和海洋防灾减灾等领域得到了广泛的应用。其中,基于SAR图像的舰船目标检测是SAR图像处理中的重要部分,其在军用和民用领域均具有重要的意义。本文针对基于深度学习实现的SAR图像目标检测算法参数计算量大、内存占用率高的问题提出了关联剪枝方法。该方法通过对网络进行改进,将相关联的卷积同时进行剪枝,并在训练结束后统一映射到低维度上以实现剪枝操作。通过在SSDD、SAR?Ship?Data?set和HRSID上进行实验,可以在保证平均精度(AP50)下降小于2%的前提下,针对FCOS网络实现70%以上的剪枝率,验证了所提方法的有效性。  相似文献   

20.
高分辨率遥感影像中地物目标往往与所处场景类别息息相关,如能充分利用场景对地物目标的约束信息,有望进一步提升目标检测性能。考虑到场景信息和地物目标之间的关联关系,提出全局关系注意力(RGA)引导场景约束的高分辨率遥感影像目标检测方法。首先在多尺度特征融合检测器的基础网络之后,加入全局关系注意力学习全局场景特征;然后以学到的全局场景特征作为约束,结合方向响应卷积模块和多尺度特征模块进行目标预测;最后利用两个损失函数联合优化网络实现目标检测。在NWPU VHR-10数据集上进行了4组实验,在场景信息约束的条件下取得了更好的目标检测性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号