首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以偶氮二异丁腈(AIBN)为发泡剂兼引发剂、CaCO3为成核剂制备了低密度不饱和聚酯树脂制品(LDUPRP)。以成型温度、AIBN用量和CaCO3用量作为三因素,设计L25(53)正交试验以确定制备LDUPRP的最佳配比和成型条件。结果表明:AIBN作为发泡剂适用于不饱和聚酯树脂(UPR)体系;LDUPRP的最佳制备条件为成型温度80℃、AIBN用量为树脂质量的2%、CaCO3用量为树脂质量的3%,此时制得的样品密度为0.452g/cm3,压缩强度达13.64MPa,比压缩强度为30.18MPa/(gcm-3),与硬质聚氨酯泡沫相近。红外光谱(FTIR)分析表明,AIBN引发UPR固化的结果与过氧化苯甲酸叔丁酯(TBPB)一致;丙酮萃取法和差示扫描量热(DSC)分析表明,AIBN用量为树脂质量的2%时树脂的固化度最高;样品断面分析表明,成核剂及其用量对泡孔形态有一定影响,不含CaCO3时形成狭长的泡孔,当CaCO3用量为树脂质量的7%时LDUPRP出现并泡现象。  相似文献   

2.
废旧线路板粉料作为BMC填料的正交试验研究   总被引:1,自引:0,他引:1  
戎国林  刘学平 《当代化工》2009,38(4):329-331,351
将废旧线路板回收处理过程中得到的粉料作为填料,采用模压成型的方法制备成BMC(预制团状模塑料)复合材料。通过正交试验确定BMC材料中不饱和聚酯树脂、短切玻纤和废旧线路板粉料的最优配比,同时得到树脂、粉料及玻纤加入量对BMC材料性能的影响。结果表明:当加入30份的短切玻纤、45份的废旧线路板粉料和30份的不饱和聚酯树脂时,制备的材料综合性能达到最优,弯曲强度和压缩强度可达63.8MPa、101.5MPa。  相似文献   

3.
以甲苯二异氰酸酯(TDI)为发泡剂,CaCO_3为填料制备了CaCO_3/低密度不饱和聚酯树脂(CaCO_3/LDUPR)发泡制品。通过理论分析和红外光谱实验确定TDI可以用作制备CaCO_3/LDUPR样品的发泡剂。通过表观密度和压缩强度的测试,结合扫描电子显微镜的分析,确定了采用TDI制备CaCO_3/LDUPR发泡制品的最佳条件。结果表明:当TDI质量分数为4%,CaCO_3质量分数为30%时,由TDI制备的CaCO_3/LDUPR样品的表观密度达到(0.48±0.02)g/cm3,比压缩强度为(37.19±1.49)MPa·g-1·cm3。TDI制备的CaCO_3/LDUPR样品的微观孔结构和性能均优于MDI和AIBN制备的发泡样品。  相似文献   

4.
采用多孔微珠为填料制备了不饱和聚酯低密度团状模塑料(BMC)。选取多孔微珠的粒径及掺量,短切玻璃纤维的长度及掺量为4因素,设计L16(44)正交试验,并结合示差扫描量热法(DSC)和扫描电镜(SEM)对复合体系的增强机理进行了研究。结果表明,制备轻质BMC材料的最佳条件为:多孔微珠的粒径<0.710 mm,掺量4%,短切玻纤长度6 mm,掺量30%,此时制得BMC材料密度为1.314 g/cm3,弯曲强度为81.50 MPa,满足国标GB/T 23641—2009对BMC弯曲强度的要求(≥80 MPa)。多孔微珠的蜂窝壁对树脂的固化起到了阻碍作用,固化时间延长,放热不完全,同时多孔微珠的填充使得树脂基体的应力分散不均,样品的表观密度和弯曲强度降低。  相似文献   

5.
正1传统复合材料(1)高性能复合材料。采用直线排列的连续碳纤维增强高性能树脂(如:环氧树脂、乙烯基酯树脂等),使用结构化程度很高的成型工艺制造(如:高压模塑工艺、热压罐工艺等),它本身及其制品的刚度、强度都很高。(2)低档短切纤维复合材料。采用短切玻纤(GF)增强普通树脂(如:不饱和聚酯树脂等),使用结构化程度较低的成型工艺(如:喷射成型、注射成型等),它本身及其制品的  相似文献   

6.
通过在热塑性聚酰亚胺(PI)粉末中添加高温发泡剂一步发泡制得PI泡沫材料,探讨了一步法制备PI泡沫过程中的模具密闭性、发泡温度、发泡剂用量等几个关键因素对材料结构及力学性能的影响。结果表明,一步发泡法制备PI泡沫材料过程中模具密闭性、发泡剂用量对泡沫性能有很大影响。经优化的制备条件为:树脂粉在烘箱中60℃预处理2 h,发泡剂质量分数为2%,成型温度为280℃,成型压力为10 MPa,发泡时间为30 min。在优化的实验条件下制备的热塑性PI泡沫材料样品的密度为0.463 g/cm3时,压缩强度为10.86 MPa,冲击强度为6.2 kJ/m2,弯曲强度为12.8 MPa。  相似文献   

7.
长玻纤增强尼龙6复合材料研究   总被引:17,自引:3,他引:17  
采用熔体浸渍工艺制备了长玻纤增强尼龙6预浸料,研究了玻纤初始长度、玻纤含量、增韧剂对复合材料性能的影响,以及玻纤强度、树脂基体对复合材料性能的影响。试验结果表明,在玻纤含量32.2%,切粒长度为10mm时,复合材料的拉伸强度为208.4MPa,弯曲强度为269.5MPa,弯曲弹性模量为9.34GPa,缺口冲击强度为29kJ/m^2,冲击强度为63.4kJ/m^2,综合力学性能明显优于短玻纤增强PA6复合材料。  相似文献   

8.
亚麻纤维通过针刺工艺加工成非织造布,再经缝合加固后,作为复合材料的增强体,与不饱和聚酯树脂复合,制成亚麻/不饱和聚酯复合材料板材及异型件。利用真空辅助树脂传递模塑法制备出的板材,亚麻纤维和树脂结合较为均匀、充分。模压法形成的亚麻非织造布异型件成型良好,无褶皱与破洞。对板材及异型件拉伸、弯曲及压缩等性能的测试结果表明,板材拉伸强度最大值达58.59MPa,弯曲强度最大值为120.26MPa;采用平行缝合工艺的异型件最大破坏载荷为8.99kN。  相似文献   

9.
依据热平衡发泡原理,选择NaHCO3、偶氮二甲酰胺(AC)、偶氮二异丁腈和4,4-氧代双苯磺酰肼组成不同热平衡复合发泡剂发泡不饱和聚酯树脂,通过示差扫描量热仪(DSC)、扫描电镜(SEM)和力学性能测试对其发泡机制进行了研究。结果表明:先吸热后放热的热平衡复合发泡剂发泡材料泡孔孔径小且分布均匀。AC与NaHCO3质量比为6∶4组成的热平衡发泡剂制得的发泡不饱和聚酯树脂的表观密度为0.546 g/cm3,压缩强度为13.73 MPa,比压缩强度达到25.15 MPa/(g.cm-3)。  相似文献   

10.
对3种不同线密度的玻璃纤维进行直立式浸胶,将浸胶的玻纤通过叉式架构成型工艺制备短玻纤/不饱和聚酯树脂(CGF/UPR)架构夹芯材料。通过平压和测压性能测定及扫描电镜分析研究了玻纤线密度对(CGF/UPR)架构夹芯材料性能的影响。结果表明:900tex玻纤制得的(CGF/UPR)架构夹芯材料的平压比强度和侧压比强度最高,分别达到(1.80±0.01)×103 N·m/kg和(9.80±0.03)×103 N·m/kg。在该材料的平压和侧压两种受力过程中,材料结构的破坏均缘于纤维束自身破坏和粘结点破坏,这两种破坏形式结合架构夹芯材料的无序结构特征,导致短玻纤/不饱和聚酯树脂架构夹芯材料表现出平压无屈服性的特性。  相似文献   

11.
利用高压喷灌机开展了长玻纤增强硬质聚氨酯泡沫塑料(RPUF)的成型技术研究。结果表明:RPUF的弯曲模量随着玻纤用量的增加而增大;密度为0.75 g/cm3的RPUF的弯曲强度随玻纤用量的增加而减小,密度为0.95g/cm3的RPUF的弯曲强度随玻纤用量的增加而增大,当玻纤质量分数大于40%时,弯曲强度开始下降;在载荷垂直于玻纤的分布方向,RPUF的压缩模量随着玻纤用量的增加先增大后减小,在载荷平行于玻纤分布方向,压缩模量随着玻纤用量的增加而增大;RPUF的压缩强度随着玻纤用量的增加而减小;RPUF的压缩强度和压缩模量在载荷平行于玻纤分布方向明显高于载荷垂直于玻纤分布方向;随着玻纤用量和长度的增加,RPUF的冲击强度均明显提高。  相似文献   

12.
分别以聚丙烯(PP)、聚乙烯(PE)、玻纤增强PP/PE为基体材料,通过挤出成型制备了木塑复合材料(WPC)。研究表明,玻纤能够有效地提高WPC的性能,以玻纤增强PP/PE为基体制备的WPC的冲击强度、拉伸强度、弯曲强度、弯曲弹性模量分别达到4.58 kJ/m2,19 MPa,30.8 MPa,3520 MPa,性能优于以PP或PE为基体制备的WPC。  相似文献   

13.
合成了一种异氰酸酯嵌段共聚改性不饱和聚酯树脂(UP/PU),并以玻纤增强制备了复合材料(GFRP)。通过接触角、拉伸性能、弯曲性能测定和扫描电镜观察研究了UP/PU GFRP界面的粘结性能。结果表明:UP/PU树脂与玻璃表面的接触角为20°,对玻璃表面的润湿性较通用邻苯型UP好;GFRP拉伸强度1 050 MPa,弯曲强度1 220 MPa,较通用邻苯型UP的GFRP分别提高了145%和78%,说明UP/PU与玻纤的界面粘结性能较好。  相似文献   

14.
通过分子结构设计先合成了低平均聚合度端羟基不饱和聚酯(UP),再与异氰酸酯(PU)共聚反应,得到了一种异氰酸酯嵌段改性不饱和聚酯树脂。通过力学性能测试和红外光谱分析研究了UP/PU共聚体各合成反应阶段分子官能团的变化,醇酸比、二元醇种类对UP齐聚物的平均聚合度和粘度的影响,UP/PU共聚体中PU链段对固化后树脂力学性能的影响以及其玻纤复合材料的性能。结果表明,UP/PU浇铸体及玻纤复合材的拉伸强度分别为75MPa,956MPa,弯曲强度分别为116MPa,1220MPa,UP/PU共聚改善了现有不饱和聚酯树脂脆性大、固化收缩率高及与玻璃纤维的粘结性差等缺点。  相似文献   

15.
不饱和聚酯树脂的固化是玻纤增强聚酯塑料成型工艺的关键。通常工业上对于不饱和聚酯树脂固化情况好坏的评定,是通过表面硬度和固化度等的测试来确定。本文采用测试已固化树脂温度—形变曲线的方法来确定树脂固化情况的好坏。发现该法不但简便,而且能敏感地反映树脂网络的交联密度  相似文献   

16.
《塑料》2017,(4)
通过对玻纤增强SAN树脂(SAN/GF)的力学性能分析,研究了影响玻纤增强SAN材料的因素。结果表明,添加SMA相容剂有助于增加SAN树脂与玻纤的界面结合强度,提高材料的力学性能,相容剂含量为3%时,增强材料的拉伸强度和弯曲强度分别达到117.2和140.2 MPa,比未加相容剂时,强度分别增加22.8%和12.8%。适量润滑剂的添加对提高材料力学性能具有正面效应,根据实验研究,润滑剂用量在0.2%时,玻纤增强材料性能较好。单丝直径为13和14μm的2种玻纤的增强效果差别不大,制备的增强材料的拉伸强度都在115 MPa以上,弯曲强度大于135 MPa。主机螺杆转速对玻纤增强SAN材料的力学性能影响不大。玻纤含量在20%时,制备的玻纤增强材料的冲击性能最好,达到5.7 kJ/m~2。  相似文献   

17.
研究了长玻纤增强聚丙烯复合材料的成型工艺对其各项性能的影响。结果显示:LFT-S在线混炼注塑一步法成型工艺制备的制品,其拉伸强度、弯曲强度、冲击强度达到了135.2MPa、196.6 MPa和34.3 kJ/m~2,相较于传统LFT-G先造粒再注塑成型工艺制备的制品,分别提高了17.8%、20.6%和56.6%。主要原因是在LFT-S工艺制品中,其长玻纤平均保留长度为5~8 mm,远大于玻纤增强复合材料中纤维临界长度(3.0 mm),长玻纤所形成的缠结网络结构能更好地承受各个方向上的应力。此外,通过扫描电子显微镜对断面的分析表明:纤维增强制品在断裂过程中,需要克服纤维与基体间的粘结力,随着大量玻纤从基体树脂中拔出,大量聚丙烯树脂残留在玻纤表面,证明玻纤与聚丙烯基体界面结合力较强。  相似文献   

18.
通过注塑法制备了聚丙烯(PP)/竹粉发泡复合材料,研究了铝酸酯、竹粉和AC发泡剂用量对复合材料密度和物理力学性能的影响.结果表明:添加适量的铝酸酯可提高材料大部分的力学性能和加工流动性,其最佳用最为竹粉用量的1%.竹粉对材料有一定增强作用.随着竹粉用量增加,弯曲强度先增后降,断裂伸长率下降、维卡软化点增大、拉伸和冲击强度下降.AC发泡剂的最佳用量为0.5份,此时材料的密度为0.864 g/cm、比未发泡材料下降12.5%;比弯曲和比拉伸强度分别为50.74 MPa·g-1·cm3和26.99 MPa·g-1·cm3,仅比未发泡材料下降11%和1.9%;而比冲击强度为10.823 kJ·m-2g-1·cm3,增大5.6%.  相似文献   

19.
本文以环氧树脂为基体,经改性过的短切玻璃纤维为增强材料,制备了玻璃纤维增强环氧树脂(GF/EP)复合材料。探究了玻璃纤维与环氧树脂配比、固化条件对GF/EP复合材料力学性能的影响。结果表明:当玻纤用量为20%、固化温度为120℃、固化时间为3.0 h时制备的GF/EP复合材料拉伸强度约为38.52 MPa、冲击强度约为6.46k J/m2;GF/EP复合材料经60℃、5%的食盐水浸泡48 h后力学性能下降,SEM显示纤维与树脂的粘结界面经腐蚀后被破坏。  相似文献   

20.
以不饱和聚酯树脂短玻纤为主的模压成型团料(BMC)与不饱和聚酯树脂浸渍长玻纤以上下复合方式能得到高性能、高外观质量的井盖材料,研究了在制备过程中物料的捏合时间对物料性能的影响,确定短纤维料和长纤维料在质量比为4:6时性价比最好,并基于有限元分析研究井盖的力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号