共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
基于聚类的LS-SVM的入侵检测方法研究 总被引:1,自引:0,他引:1
本文针对最小二乘法支持向量机在入侵检测中的训练效率低下的缺点,将聚类方法应用其中。该方法主要用来对数据集进行剪枝,有效地减少距离分类面较远的数据集合数量,而使用靠近聚类中心的数据集合作为有效的样本集合,减少样本的训练时间,提高训练效率。实验表明,使用聚类方法提高了最小二乘法支持向量机的训练效率,而且对入侵检测有很好的效果。 相似文献
3.
4.
基于粒子群LSSVM的网络入侵检测 总被引:4,自引:1,他引:4
研究保护网络安全问题,计算机网络攻击的多样性及隐蔽性导致网络入侵检测困难.当前流行的人工神经网络检测方法的网络入侵检测率仅70%左右,不能满足网络安全防护需求,为了解决上述问题,提出基于最小二乘支持向量机和粒子群优化算法(PSO-LSSVM)的网络入侵检测方法,粒子群优化算法用于选择合适的最小二乘支持向量机参数.方法泛化能力强,识别精度高.在网络入侵检测中,通过KDDCup99数据库数据进行仿真,证明方法的优越性.实验结果表明粒子群优化算法与最小二乘支持向量机组合方法的网络入侵检测精度优于LSSVM与SVM.可见,PSO-LSSVM非常适合于网络入侵检测,可为网络保护设计提供参考. 相似文献
5.
6.
研究网络安全问题,针对对网络异常入侵检测数据的特征进行提取,用传统异常入侵检测算法存在小样本情况下训练精度高,预测精度低的过拟合缺陷,出现误报和漏报现象,提出一种基于支持向量机的网络异常入侵检测方法.在支持向量机的网络异常入侵检测过程中,利用网格法寻找支持向量机最优参数,并找到的最优参数对网络异常入侵训练样本进行训练学习,得到最优异常入侵检测模型,对入侵检测数据进行预测.以网络异常入侵标准数据库DARPA中的数据集进行了仿真.仿真结果表明,小样本数据的支持向量机有较高的网络入侵检测准确率,具有较好的实时性,是一种高效、误报和漏报率低的网络异常入侵检测方法. 相似文献
7.
为了有效避免传统最小闭包球算法的内核限制问题以及子二次规划问题(quadratic problem,QP),提出了基于广泛内核的最小闭包球算法的入侵检测方法.首先算法对样本集求其中心约束的最小闭包球(center-constrained minimum enclosing ball,CCMEB)问题,通过球心和半径的更新求得新的最小闭包球(minimum enclosing ball,MEB),从而决定分类超平面的支持向量.然后从理论上分析该算法的收敛性、时间复杂度和空间复杂度.最后再根据支持向量的分布对网络的入侵行为进行分类.通过用KDD99数据的验证,证明了这种方法的有效性和可行性. 相似文献
8.
9.
计算机网络攻击的多样性及隐蔽性,导致了其难以被检测,针对保护网络的安全性,准确识别网络异常问题,为了克服传统网络异常检测技术检测精度低等缺点,提出基于遗传算法优化的最小二乘支持向量机的网络异常检测方法.最小二乘支持向量机分类器(LSSVC)是一种进化的支持向量机分类器(SVC),通过构造新的二次损失函数以解决支持向量机中的二次规划问题.遗传算法用于选择合适的最小二乘支持向量机参数.选取KDDCup99数据测试采用提出的方法检测性能.实验结果表明遗传算法优化的最小二乘支持向量机分类器的网络异常检测精度高,效果好,为网络安全提供了保证. 相似文献
10.
对入侵检测和支持向量机的知识进行了基本的介绍,概述了支持向量机实现入侵检测的基本思想,提出了一个基于支持向量机的入侵检测模型,并对其中各个模块进行功能介绍,然后将支持向量机引入到入侵检测系统中。利用KDD99入侵检测数据进行了仿真实验,分析了该模型的工作过程。实验结果表明:该模型避免了高维特征空间的复杂计算,较好地解决了小样本、非线性、高维数、局部极小点等实际问题,能够较好地检测出入侵行为。 相似文献
11.
基于最小二乘支持向量机的Linux主机入侵检测系统 总被引:3,自引:0,他引:3
论文探讨在新的网络软硬件环境、各种新的攻击工具与方法下,建立一个实际的网络入侵异常检测系统的可行性。为此,论文建立一个基于Linux主机的入侵检测实验环境,在同时提供多种正常服务的条件下实施攻击、提取特征并应用最小二乘支持向量机(LS-SVM)检测入侵。结果表明检测系统设计合理,特征提取及检测方法有效。 相似文献
12.
This paper presents a novel face detection method by applying discriminating feature analysis (DFA) and support vector machine (SVM). The novelty of our DFA-SVM method comes from the integration of DFA, face class modeling, and SVM for face detection. First, DFA derives a discriminating feature vector by combining the input image, its 1-D Haar wavelet representation, and its amplitude projections. While the Haar wavelets produce an effective representation for object detection, the amplitude projections capture the vertical symmetric distributions and the horizontal characteristics of human face images. Second, face class modeling estimates the probability density function of the face class and defines a distribution-based measure for face and nonface classification. The distribution-based measure thus separates the input patterns into three classes: the face class (patterns close to the face class), the nonface class (patterns far away from the face class), and the undecided class (patterns neither close to nor far away from the face class). Finally, SVM together with the distribution-based measure classifies the patterns in the undecided class into either the face class or the nonface class. Experiments using images from the MIT-CMU test sets demonstrate the feasibility of our new face detection method. In particular, when using 92 images (containing 282 faces) from the MIT-CMU test sets, our DFA-SVM method achieves 98.2% correct face detection rate with two false detections. 相似文献
13.
大数据分析方法能发现数据中存在的关系和规则,预测事物未来的发展趋势,从而提高决策的科学性。针对传统预测方法精度低、泛化性差的问题,提出基于智能支持向量机的大数据分析与预测方法。设计一种新的支持向量机模型参数选择准则,即模型残差概率密度函数逼近给定的高斯分布,并按照该准则采用混沌收缩粒子群优化算法确定模型参数,从而提高数据分类或回归处理的精度与泛化性。采用选矿生产过程现场数据进行实验,结果验证了该方法的有效性,并表明其精度比LSSVM方法更高。 相似文献
14.
SVM在解决小样本、非线性及高维模式识别问题中表现出诸多特有的优势,结合模式分类,研究SVM的基本思想、训练算法及其应用,讨论海量样本数据的改进训练算法以及多类别分类方法等方面. 相似文献
15.
部分函数线性模型是用于处理输入变量包含函数型和数值型两种数据类型而输出变量为数值的一类回归机.为提高该模型的预测精度,基于函数系数在再生核Hilbert空间上的表示,得到模型的结构化表示,将函数系数的估计转化为参数向量的估计问题,并运用最小二乘支持向量机方法得到参数估计形式.实验表明,文中算法对数值型数据的向量系数的估计与其他参数估计方法性能相近,但对函数型数据的函数系数的估计更加准确稳健,有助于确保学习机的预测精度. 相似文献
16.
传球动作是RoboCup仿真足球比赛得以进行的纽带,进球并赢得比赛是球队的最终目标,分析传球与比赛胜负的关系,采用数据挖掘的思想,用C语言程序解析仿真比赛日志文件的方法来收集所需的传球数据,基于距离将传球分为5种类型,以5种类型的传球作为解释变量,以比分作为因变量,采用偏最小二乘法搭建数学模型,用SIMCA-P软件进行仿真实验,并采用相关图形进行分析与说明。在包含解释变量72.8%、因变量74.4%信息量的情况下,5个解释变量对因变量的投影重要性指标值分别为0.081 14,0.996 66,1.028 9,1.088 06,1.325 73。实验结果表明,对传球来说,长传球对比赛胜负的影响最大。 相似文献
17.
肖国荣 《计算机工程与应用》2014,(3):75-78,107
为了提高网络入侵检测的正确率,提出一种改进蚁群优化算法(ACO)和支持向量机(SVM)相融合的网络入侵检测方法(ACO-SVM)。将SVM模型参数作为蚂蚁的位置向量,采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,同时在最优蚂蚁邻域内进行小步长局部搜索,找到SVM最优参数,采用最优参数建立网络入侵检测模型。利用KDDCUP99数据集对ACO-SVM性能进行测试,结果表明,ACO-SVM提高了网络入侵检测正确率,降低了误报率,可以为网络安全提供有效保证。 相似文献
18.
该文提出了基于支撑向量机SVM(SupportVectorMachine)结合由主元分析PCA(PrincipleComponentAnaly-sis)导出的DFFS(DistanceFromFaceSpace)判据进行人脸视觉语音特征区域定位的方法。并与基于传统Fisher准则的线性判别方法FDA(FisherDiscriminationAnalysis)结合DFFS判据的定位结果进行了比较分析。在有限样本的情况下,基于SVM-DFFS的方法与传统的线性FDA-DFFS方法相比具有一定的优势。该文实验中所使用的样本数据来自中国科学院声学所汉语听觉、视觉双模态数据库(CAVSRv1.0)。 相似文献
19.
提出以图像的梯度直方图和颜色直方图作为分类特征,分析最小二乘支持向量机(LS-SVM)算法以及该算法与传统SVM算法的区别,比较传统分类算法与LS-SVM算法的分类准确度,将LS-SVM算法用于图像垃圾邮件过滤。实验结果表明,该方法能提高图像垃圾邮件的检测率。 相似文献
20.
为了解决最小二乘支持向量机模型稀疏性不足的问题,提出了一种约简核矩阵的LS-SVM稀疏化方法.按照空间两点的欧式距离寻找核矩阵中相近的行(列),并通过特定的规则进行合并,以减小核矩阵的规模,进而求得稀疏LS-SVM模型.以高斯径向基核函数为例,详细阐述了改进方法的实现步骤,并通过仿真表明了采用该方法求得的稀疏LS-SVM模型泛化能力良好. 相似文献