共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
基于聚类的LS-SVM的入侵检测方法研究 总被引:1,自引:0,他引:1
本文针对最小二乘法支持向量机在入侵检测中的训练效率低下的缺点,将聚类方法应用其中。该方法主要用来对数据集进行剪枝,有效地减少距离分类面较远的数据集合数量,而使用靠近聚类中心的数据集合作为有效的样本集合,减少样本的训练时间,提高训练效率。实验表明,使用聚类方法提高了最小二乘法支持向量机的训练效率,而且对入侵检测有很好的效果。 相似文献
3.
入侵检测系统面临的主要问题是计算量大,特征选择被引入解决这一问题。针对现有方法的缺点,利用改进的粒子群算法来搜索最优特征子集,提出了一种基于混合CatfishPSO和最小二乘支持向量机的特征选择方法,利用混合的CatfishBPSO和CatfishPSO选择特征子集并同步对LSSVM的参数进行优化,最后建立了一个基于该特征选择方法的入侵检测模型。在KDD Cup 99数据集上进行的实验结果表明该模型的检测性能较高。 相似文献
4.
基于粒子群LSSVM的网络入侵检测 总被引:4,自引:1,他引:4
研究保护网络安全问题,计算机网络攻击的多样性及隐蔽性导致网络入侵检测困难.当前流行的人工神经网络检测方法的网络入侵检测率仅70%左右,不能满足网络安全防护需求,为了解决上述问题,提出基于最小二乘支持向量机和粒子群优化算法(PSO-LSSVM)的网络入侵检测方法,粒子群优化算法用于选择合适的最小二乘支持向量机参数.方法泛化能力强,识别精度高.在网络入侵检测中,通过KDDCup99数据库数据进行仿真,证明方法的优越性.实验结果表明粒子群优化算法与最小二乘支持向量机组合方法的网络入侵检测精度优于LSSVM与SVM.可见,PSO-LSSVM非常适合于网络入侵检测,可为网络保护设计提供参考. 相似文献
5.
6.
研究网络安全问题,针对对网络异常入侵检测数据的特征进行提取,用传统异常入侵检测算法存在小样本情况下训练精度高,预测精度低的过拟合缺陷,出现误报和漏报现象,提出一种基于支持向量机的网络异常入侵检测方法.在支持向量机的网络异常入侵检测过程中,利用网格法寻找支持向量机最优参数,并找到的最优参数对网络异常入侵训练样本进行训练学习,得到最优异常入侵检测模型,对入侵检测数据进行预测.以网络异常入侵标准数据库DARPA中的数据集进行了仿真.仿真结果表明,小样本数据的支持向量机有较高的网络入侵检测准确率,具有较好的实时性,是一种高效、误报和漏报率低的网络异常入侵检测方法. 相似文献
7.
为了有效避免传统最小闭包球算法的内核限制问题以及子二次规划问题(quadratic problem,QP),提出了基于广泛内核的最小闭包球算法的入侵检测方法.首先算法对样本集求其中心约束的最小闭包球(center-constrained minimum enclosing ball,CCMEB)问题,通过球心和半径的更新求得新的最小闭包球(minimum enclosing ball,MEB),从而决定分类超平面的支持向量.然后从理论上分析该算法的收敛性、时间复杂度和空间复杂度.最后再根据支持向量的分布对网络的入侵行为进行分类.通过用KDD99数据的验证,证明了这种方法的有效性和可行性. 相似文献
8.
9.
计算机网络攻击的多样性及隐蔽性,导致了其难以被检测,针对保护网络的安全性,准确识别网络异常问题,为了克服传统网络异常检测技术检测精度低等缺点,提出基于遗传算法优化的最小二乘支持向量机的网络异常检测方法.最小二乘支持向量机分类器(LSSVC)是一种进化的支持向量机分类器(SVC),通过构造新的二次损失函数以解决支持向量机中的二次规划问题.遗传算法用于选择合适的最小二乘支持向量机参数.选取KDDCup99数据测试采用提出的方法检测性能.实验结果表明遗传算法优化的最小二乘支持向量机分类器的网络异常检测精度高,效果好,为网络安全提供了保证. 相似文献
10.
对入侵检测和支持向量机的知识进行了基本的介绍,概述了支持向量机实现入侵检测的基本思想,提出了一个基于支持向量机的入侵检测模型,并对其中各个模块进行功能介绍,然后将支持向量机引入到入侵检测系统中。利用KDD99入侵检测数据进行了仿真实验,分析了该模型的工作过程。实验结果表明:该模型避免了高维特征空间的复杂计算,较好地解决了小样本、非线性、高维数、局部极小点等实际问题,能够较好地检测出入侵行为。 相似文献
11.
目前使用的已有SVM核函数,在分类中不能逼近某一L2(R)(平方可积空间)子空间上的任意分类界面。针对上述问题,在支持向量机的核函数方法和小波框架理论的基础上,提出了LS-WSVM结构模型。实验结果表明,和标准的SVM和LS-SVM比较起来,在同等条件下,LS-WSVM在分类方面具有优良的特征提取性能。 相似文献
12.
该文提出了一种基于偏最小二乘(PLS)的支持向量机(SVM)多分类方法,该算法利用偏最小二乘思想对样本进行预处理,消除了样本属性之间的相关性,而且得到的综合属性与类信息的相关程度达到最大。通过实验可以看出,该方法不仅可以减少用支持向量机进行分类过程中的支持向量数目,而且当样本属性较多时,可以提高一定的识别率。 相似文献
13.
基于最小二乘支持向量机的Linux主机入侵检测系统 总被引:3,自引:0,他引:3
论文探讨在新的网络软硬件环境、各种新的攻击工具与方法下,建立一个实际的网络入侵异常检测系统的可行性。为此,论文建立一个基于Linux主机的入侵检测实验环境,在同时提供多种正常服务的条件下实施攻击、提取特征并应用最小二乘支持向量机(LS-SVM)检测入侵。结果表明检测系统设计合理,特征提取及检测方法有效。 相似文献
14.
为了提高网络入侵检测正确率,利用特征选择和检测分类器参数间的相互联系,提出一种特征和分类器联合优化的网络入侵检测算法。联合优化方法将网络状态特征和分类器参数作为遗传算法的个体,网络入侵检测正确率作为个体适应度函数,通过选择、交叉和变异等遗传操作获得最优特征和分类器参数,利用KDD 1999数据集对联合优化算法进行验证性测试。实验结果表明,相对于其他入侵检测算法,联合优化算法既解决了特征与分类器不匹配带来的入检测检测能力下降,又提高了网络入侵检测正确率和效率,为网络入侵检测提供了一种新的研究思路。 相似文献
15.
This paper presents a novel face detection method by applying discriminating feature analysis (DFA) and support vector machine (SVM). The novelty of our DFA-SVM method comes from the integration of DFA, face class modeling, and SVM for face detection. First, DFA derives a discriminating feature vector by combining the input image, its 1-D Haar wavelet representation, and its amplitude projections. While the Haar wavelets produce an effective representation for object detection, the amplitude projections capture the vertical symmetric distributions and the horizontal characteristics of human face images. Second, face class modeling estimates the probability density function of the face class and defines a distribution-based measure for face and nonface classification. The distribution-based measure thus separates the input patterns into three classes: the face class (patterns close to the face class), the nonface class (patterns far away from the face class), and the undecided class (patterns neither close to nor far away from the face class). Finally, SVM together with the distribution-based measure classifies the patterns in the undecided class into either the face class or the nonface class. Experiments using images from the MIT-CMU test sets demonstrate the feasibility of our new face detection method. In particular, when using 92 images (containing 282 faces) from the MIT-CMU test sets, our DFA-SVM method achieves 98.2% correct face detection rate with two false detections. 相似文献
16.
水质系统是一个开放的、复杂的、非线性动力学系统,具有时变复杂性,针对水质预测方法的研究虽然已经取得了一些成果,但也存在预测精度与计算复杂度等难题。为此,本文提出一种基于最小二乘支持向量回归的水质预测算法。支持向量机是机器学习中一种常用的分类模型,通过核函数将非线性数据从低维映射到高维空间,在高维空间实现线性分类和回归,最小二乘支持向量回归(LS-SVR)利用所有的样本参与回归拟合,使得回归的损失函数不再只与小部分支持向量样本有关,而是由所有样本参与学习修正误差,提高预测精度;同时该算法将标准SVR求解问题由不等式的约束条件及凸二次规划问题转化成线性方程组来求解,提高了运算速度,解决了非线性复杂特性的水质预测问题。 相似文献
17.
特征选择是网络入侵检测研究中的核心问题,为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)和支持向量机(SVM)相融合的网络入侵检测模型(AFSA-SVM)。将网络特征子集编码成人工鱼的位置,以5折交叉验证SVM训练模型检测率作为特征子集优劣的评价标准,通过模拟鱼群的觅食、聚群及追尾行为找到最优特征子集,SVM根据最优特征子集进行网络入侵检测,并采用KDD CUP 99数据集进行仿真测试。仿真结果表明,相对于粒子群优化算法、遗传算法和原始特征法,AFSA-SVM提高了入侵检测效率和检测率,是一种有效的网络入侵检测模型。 相似文献
18.
大数据分析方法能发现数据中存在的关系和规则,预测事物未来的发展趋势,从而提高决策的科学性。针对传统预测方法精度低、泛化性差的问题,提出基于智能支持向量机的大数据分析与预测方法。设计一种新的支持向量机模型参数选择准则,即模型残差概率密度函数逼近给定的高斯分布,并按照该准则采用混沌收缩粒子群优化算法确定模型参数,从而提高数据分类或回归处理的精度与泛化性。采用选矿生产过程现场数据进行实验,结果验证了该方法的有效性,并表明其精度比LSSVM方法更高。 相似文献
19.
为了提高卷烟销售量预测精度,提出了基于一种改进布谷鸟算法(MCS)优化混合核最小二支持向量机(LSSVM)的卷烟销售量预测模型(MCS-LSSVM)。收集卷烟销售量数据,并构建LSSVM学习样本,然后混合核函数的LSSVM对样本进行训练,并采用改进布谷鸟算法对混合核函数参数进行优化,最后建立卷烟销售量预测模型,并用于某卷烟公司卷烟销售的预测。结果表明,相对于对比模型,ICS-LSSVM模型获得了更优的建模效果和更高的预测精度。 相似文献