首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
黄雅彬  席军  韩磊  方永辉  郭卓团 《炼铁》2019,38(1):14-17
对包钢3号高炉炉缸炉底破损状况进行了调查,并对炉缸炉底的侵蚀原因进行了分析。结果表明:炉缸炉底存在"象脚状"侵蚀,侵蚀部位在炉缸炉底交界处,侵蚀的最薄处炭砖残存厚度只有400mm,侵蚀了800mm;风口下方砖衬侵蚀较为严重,风口下方6层大炭砖环裂较为明显,环裂是造成高炉大炭砖破损的主要形式;炉缸自上而下的黏结物中都有碱金属、锌等有害元素的存在,有害元素大量沉积、渗透侵蚀和炭砖体积膨胀是3号高炉炉缸破损的重要原因。  相似文献   

2.
对济钢3座1 750 m~3高炉一代炉役炉缸侵蚀情况进行了分析,扒炉过程中对炭砖残存厚度或重点部位炭砖残存厚度进行了实际测量,结果表明,3座高炉侵蚀最严重的位置都在铁口方向,但3座高炉炉缸的侵蚀情况不同,最大区别在于,2~#、3~#高炉都有较严重的环裂,并且环裂位置基本相同。分析认为,环裂与炭砖材质关系不大,与设计结构有关。提出可否降低炉底冷却水流量而增加炉缸冷却水流量以延缓炉缸侧壁侵蚀速度及改进炉缸结构设计等进一步探讨的问题。  相似文献   

3.
唐文华  肖国梁  胡峻峰  刘佳  尹凯 《炼铁》2023,(3):24-27+32
衡钢1号高炉大修投产后不到2年,炉缸个别点温度最高上升到900℃左右,危及安全生产,被迫停炉中修。停炉后观察发现,炉缸炉底呈“象脚状”侵蚀,炉缸第1层炭砖侵蚀严重,最薄弱处炭砖残余厚度仅240mm,从残铁口扒渣门两边炉缸第7~9层炭砖中部可见明显的环裂缝。认为1号高炉炉缸炭砖侵蚀过快的原因主要是:(1)高冶炼强度操作,且炉缸直径偏小,致使炉缸铁水环流强;(2)炉缸炉底耐材部分指标不达标;(3)炭砖冷面与冷却壁之间的炭素捣打料层存在气隙;(4)Pb、Zn及碱金属等有害元素控制不力;(5)铁口深度合格率低。  相似文献   

4.
高炉炉缸炉底是影响高炉寿命的限制性环节之一。为了避免发生严重侵蚀甚至烧穿等重大事故,针对马钢2 500 m~3高炉,开发了利用热电偶或者冷却设备数据监测炉缸炉底侵蚀监测模型。采用该模型,监测了马钢2 500 m~3高炉的炭砖残存厚度变化。该模型可用于判断炉缸炉底是处于侵蚀阶段还是处于堆积阶段,对高炉操作者分析、判断和调节炉况有指导作用。  相似文献   

5.
武钢5号高炉炉体破损调查研究   总被引:2,自引:1,他引:1  
对武钢5号高炉(3200m^2)大修停炉破损调查结果进行分析,重点考察了内衬和冷却壁的破损状况。5号高炉球墨铸铁冷却壁制造质量好,在采用软水密闭循环冷却的条件下,水管腐蚀、结垢比不用软水的高炉大为减轻,水管破损率低。炉缸、炉底交界处仍是侵蚀最严重部位,最小残存炭砖厚度仅有280~300mm。为减缓炉缸、炉底炭砖侵蚀,应采用高热导率的微孔、超微孔炭砖,提高炉缸、炉底的冷却强度,并采取措施减轻碱金属和锌的危害。  相似文献   

6.
对兴澄3号高炉炉缸炭砖宏观破损状况及微观形貌进行调查研究,绘制炉缸侵蚀内型,分析炉缸破损的主要原因及侵蚀机理。调查结果表明:3号高炉经过一代炉龄的生产,炉缸侵蚀为"宽脸"型侵蚀,侵蚀严重区域主要位于铁口下方1.35m~1.85m,侵蚀最严重区域主要集中在1#和3#铁口区域;碳不饱和铁水对炭砖的熔蚀和有害元素侵蚀是3号高炉炭砖破损的主要原因。  相似文献   

7.
为探究沙钢3号高炉炉缸侧壁温度升高原因,对沙钢3号高炉开炉以来的热电偶温度数据及热流强度变化趋势进行统计,并计算了炭砖的残余厚度。结合3号高炉的死铁层深度及冷却系统设计等参数,对炉缸侧壁温度升高的原因进行了解析。结果表明,沙钢3号高炉炭砖侵蚀薄弱区域处于铁口下方1~2 m,最薄位置处于西铁口,炭砖残余厚度约为517 mm。结合高炉炉缸设计发现,其炭砖侵蚀严重区域处于炉缸冷却壁薄弱位置,且与炉缸死料柱角部位置有关。研究相关结果可为国内大中型高炉设计提供相关指导。  相似文献   

8.
为了探析高炉炉缸侵蚀特征及其共性原因,基于京唐1号高炉和通才3号高炉的现场数据,分别计算了炉缸侧壁炭砖残余厚度和死料柱漂浮高度,明确了炉缸炭砖的侵蚀原因,证实了炉缸炭砖的侵蚀部位。结果表明,当死料柱透气性变差时,炉底温度逐渐降低,铁水环流加重,造成了耐火材料的异常侵蚀;由京唐1号高炉死料柱根部位置和炭砖侵蚀位置的关系,证实了死料柱根部对应炭砖易受到异常侵蚀,即铁口中心线下方1~3 m。由于死料柱物理状态和漂浮状态随生产参数和高炉状态的变化而变化,因此侵蚀部位也随之变化,故应稳定原燃料条件及生产参数,并建立死料柱漂浮高度和炭砖残余厚度的实时监测机制,从而保证高炉安全生产,实现高炉长寿。  相似文献   

9.
《炼铁》2019,(4)
莱钢银山1号高炉累计已生产13年,单位炉容产铁量1 1000 t/m~3,利用大修机会,对炉缸侵蚀状况进行了调查。调查结果表明:①1号高炉炉底炉缸为典型的象脚状侵蚀,炉缸部位的UCAR炭砖表现出较好的质量;②炉底两层陶瓷垫完全侵蚀,侧壁的侵蚀并不严重,仍有相对完整的陶瓷杯壁,而且炭砖稳定附着至少500mm厚的渣壳,其主要安全隐患在于炉底第三、四层炭砖的龟裂、粉化和渗铁,有烧穿的风险;③铁口组合砖部位的异常侵蚀是另一个最危险的区域。  相似文献   

10.
二高炉1995年5月大修投产至2002年10月,一代炉龄7年4个多月,单位炉容产铁6280t/m^3,停炉后进行了高炉炉体破损调查。经调查发现,炉缸侧壁自焙炭砖最薄处仅剩余70mm,炉底中心三层自焙炭砖全部被侵蚀,旧炉底高铝砖被侵蚀170mm。  相似文献   

11.
宋剑 《四川冶金》2011,33(2):11-13
分析了攀钢3号高炉2010年3月大凉事故原因,总结了大凉事故恢复及经验教训。  相似文献   

12.
萍钢实业股份公司九江炼铁厂1号高炉于2011年3月开始出现恶性悬料,休风坐料后检查发现炉身结瘤,采取降料面炸瘤处理后炉况恢复正常。通过对结瘤进行分析,总结炉况处理的成功与不足,以便积极应对高炉冶炼条件的变化,确保炉况稳定顺性。  相似文献   

13.
双预热蓄热式加热炉减小炉压的研究与应用   总被引:8,自引:1,他引:8  
蓄热式加热炉与传统加热炉相比,因预热方式不同,存在燃烧、排烟等方式不同,炉内气体流动方式亦不同,普遍存在炉压大,易冒火,炉况较难控制的通病.笔者通过对蓄热炉的设计与应用经验,阐述了解决这一问题的方法.  相似文献   

14.
鞍钢11号高炉炉缸炉底侵蚀模型的开发与应用   总被引:1,自引:0,他引:1  
聂宝义  车玉满  俞爱国 《炼铁》2005,24(4):9-12
对监视炉缸、炉底工作状态数学模型建立方法,如何应用该模型判断炉底、炉缸热面温度变化,推断1150℃等温线位置及炉缸的工作状态进行了介绍,并对该数学模型在鞍钢11号高炉上的应用情况进行了总结,确定鞍钢11号高炉炉缸、炉底温度场工作标准。  相似文献   

15.
雷有高  魏功亮  赵仕清 《炼铁》2007,26(1):20-22
根据钒钛原料的冶金性能,结合重钢5号高炉的生产实践,分析研究钒钛炉料对高炉高温区,尤其是炉缸和炉底的护炉作用.钒钛矿护炉冶炼能有效地对高炉炉墙、炉缸及炉底系统全面地起到维护作用,有利于高炉长寿.钒钛矿相对进口矿价格较低,只要炉料结构配比合理,选择适宜的热制度、造渣制度和合理的冶炼参数,避免钒钛护炉冶炼带来的负面影响,就能达到护炉的效果,同时又能实现高效低成本生产.  相似文献   

16.
介绍了唐钢带钢厂中550车间三段连续式燃煤加热炉的改造设计  相似文献   

17.
邹永刚  罗铭  简云  戴波  黎家恒 《江西冶金》2012,(4):11-13,28
根据自身结构特点和技术装备优势,对10号高炉风量、富氧率、顶压等操作参数进行了优化,使利用系数由2.542 t/m3.d提高到2.600 t/m3.d,创造了良好的经济效益。  相似文献   

18.
详细介绍了金川铜合成炉的烘炉过程控制和投料试生产情况。  相似文献   

19.
陆金忠  张天权 《有色冶炼》2007,36(4):19-20,52
详细介绍了金川铜合成炉的烘炉过程控制和投料试生产情况。  相似文献   

20.
通过对高炉炉型影响因素的分析,结合武钢6号高炉炉型管理的实践,总结出高炉炉型管理和日常维护的主要经验是:加强原燃料管理、水系统管理和高炉日常操作管理。炉内参数调剂合理,炉前渣铁排放及时均匀,炉况稳定顺行是高炉炉型合理稳定的有力保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号