共查询到17条相似文献,搜索用时 64 毫秒
1.
自适应字典学习利用图像结构自相似性,将图像自身作为训练样本,通过字典学习使图像中的相似块在字典下具有稀疏表示形式.本文将全局字典学习中利用图像库获取附加信息的思想融入到自适应字典学习的过程中,提出了一种基于自适应多字典学习的单幅图像超分辨率算法,从低分辨率图像自身与图像库同时获取附加信息.该算法对低分辨率图像金字塔结构中的图像块进行聚类,在聚类结果的引导下将图像库中的图像块进行分类,利用各类中的样本分别构建针对各类的多个字典,从而确定表达重建图像块的最优字典.实验表明,与ScSR、SISR、NLIBP、CSSS以及mSSIM等算法相比,本文算法具有更好的超分重建效果. 相似文献
2.
提出一种基于混合字典的图像稀疏分解去噪方法。使用小波包函数和离散余弦函数构成混合字典,采用匹配追踪算法对图像进行稀疏分解,提取含噪图像中的稀疏成分,最后利用稀疏成分进行图像重构,达到去除图像中噪声的目的。实验中与单一字典稀疏分解去噪算法进行了对比,结果表明,所提出的混合字典稀疏去噪算法可有效提取图像中的稀疏结构,改善重构图像的主客观质量。 相似文献
3.
4.
提出了一种基于字典学习的运动目标检测方法.该方法首先使用多帧平均方法从训练样本中得到初始背景,再通过BP算法建立背景的初始稀疏表示模型;然后利用视频序列中当前时刻的近邻五帧图像,通过K-SVD方法自适应更新背景数据字典中的原子,使背景稀疏表示模型最优逼近近邻帧背景的观测值;最后将当前帧图像与背景模型进行差分,完成前景运动目标的检测.仿真和对比实验结果表明,对图像信号进行稀疏表示可以有效降低数据的冗余度,减小运行时间,同时在字典更新阶段利用近邻帧图像的相关性特性,能获得鲁棒性较好的背景字典,自动排除伪前景的干扰,从而提高视频序列中的运动目标检测的准确率. 相似文献
5.
6.
为了更好地实现图像的去噪效果,提出了一种改进的基于K-SVD(Singular Value Decomposition)字典学习的图像去噪算法。首先,将输入的含噪信号进行K均值聚类分解,将得到的图像块进行稀疏贝叶斯学习和噪声的更新,当迭代到一定次数时继续使用正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法对图像块进行稀疏编码,然后在完成稀疏编码的基础上通过奇异值分解来逐列更新字典,反复迭代至得到过完备字典以实现稀疏表示,最后对处理过的图像进行重构,得到去噪后的图像。实验结果表明,本文的改进算法相对于传统的K-SVD字典的图像去噪能够在保留图像边缘和细节信息的同时,更有效地去除图像中的噪声,具有更好的视觉效果。 相似文献
7.
基于主成分分析和字典学习的高光谱遥感图像去噪方法 总被引:3,自引:0,他引:3
高光谱图像变换域各波段图像噪声强度不同,并具有独特的结构。针对这些特点,该文提出一种基于主成分分析(Principal Component Analysis, PCA)和字典学习的高光谱遥感图像去噪新方法。首先,对高光谱数据进行PCA变换得到一组主成分图像;然后,对信息量较小的主成分图像分别采用基于自适应字典的稀疏表示方法和对偶树复小波变换方法去除空间维和光谱维的噪声;最后,通过PCA逆变换得出去噪后的数据。结合主成分分析和字典学习的优势,该文方法相对于传统方法对高光谱图像具有更好的自适应性,在细节得到保留的同时有效地抑制了斑块效应。对模拟和实际高光谱遥感图像的实验结果验证了该文方法的有效性。 相似文献
8.
9.
非相干子字典多原子快速匹配追踪算法 总被引:1,自引:0,他引:1
从冗余字典中得到信号的最稀疏表示是一个NP难问题,即使是次优的匹配追踪仍然相当复杂.该文提出一种多原子快速匹配追踪算法.该算法首先将冗余字典分解成M个非相干的子字典,每次迭代分别从各子字典中至多选取一个满足条件的原子组成多原子集;最后通过求信号在多原子集上的正交投影,得到信号的多原子稀疏逼近.实验采用真实音频信号进行仿真;结果表明新的算法获得与匹配追踪相当的稀疏逼近性能,同时大大提高了信号稀疏分解的速度. 相似文献
10.
11.
针对传统滤波算法在滤除红外图像噪声时会损失部分有用信息的问题,提出一种基于自适应过完备稀疏表示的红外图像滤波方法。该方法采用K-SVD算法以待滤波的红外图像为样本训练出自适应过完备原子库;采用正交匹配跟踪算法将红外图像信号在该过完备原子库上稀疏分解为稀疏成分和其他成分,稀疏成分对应红外图像中的有用信息,其他成分对应红外图像中的噪声,由稀疏成分重建图像,从而达到消除噪声的目的。实验结果表明:该方法相比传统方法具有更好的滤波效果,重建图像质量较高。 相似文献
12.
13.
非局部学习字典的图像修复 总被引:2,自引:0,他引:2
该文提出一种新的基于学习的图像修复算法。与经典的稀疏表示模型不同,该文将非局部自相似图像块统一进行联合稀疏表示,训练高效的学习字典,并使自相似块间保持相同的稀疏模式。该方法既确保自相似块投影到稀疏空间后也具有相似性,也较好地保留了自相似块间的相关性信息,更有效地建立了它们的联合稀疏关联,并将这种关联作为先验知识来指导图像的修复。该算法使用大量自然图像样本来训练初始的过完备字典,既利用了样本图像的先验知识,又充分考虑了待处理图像本身的相关信息,自适应性强。通过对自然图像进行大﹑小范围图像修复和文字去除实验,该文方法均取得不错的修复效果。 相似文献
14.
目前基于图像块稀疏表示的超分辨率重构算法对所有图像块都用同一字典表示,不能反映不同类型图像块间的差别.针对这一缺点,本文提出基于图像块分类稀疏表示的方法.该方法先利用图像局部特征将图像块分为平滑、边缘和不规则结构三种类型,其中边缘块细分为多个方向.然后利用稀疏表示方法对边缘和不规则结构块分别训练各自对应的低分辨率和高分辨率字典.重构时对平滑块利用简单双三次插值方法,边缘和不规则结构块由其对应的高、低分辨率字典通过正交匹配追踪算法重构.实验结果表明,与单字典稀疏表示算法相比,本文算法对图像边缘部分重构质量明显改善,同时重构速度显著提高. 相似文献
15.
16.
提出了一种基于稀疏表示的脑电棘波检测算法,首先以高斯函数及其一、二阶导数为原子的生成函数构建了一个冗余多成份字典,再应用匹配追踪算法获取脑电信号在此字典下的M项稀疏逼近,由该逼近的导数信息与原子的结构参数可准确度量瞬时波形的形态结构特征,进而提出基于形态结构匹配的棘波检测算法,克服了Gabor字典不能识别周期化棘波序列的缺点,同时能够有效去除背景节律与伪迹的影响,检测结果表明该算法针对临床EEG信号的检测率高达93.9%,正确率高达88.0%. 相似文献