首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 64 毫秒
1.
自适应字典学习利用图像结构自相似性,将图像自身作为训练样本,通过字典学习使图像中的相似块在字典下具有稀疏表示形式.本文将全局字典学习中利用图像库获取附加信息的思想融入到自适应字典学习的过程中,提出了一种基于自适应多字典学习的单幅图像超分辨率算法,从低分辨率图像自身与图像库同时获取附加信息.该算法对低分辨率图像金字塔结构中的图像块进行聚类,在聚类结果的引导下将图像库中的图像块进行分类,利用各类中的样本分别构建针对各类的多个字典,从而确定表达重建图像块的最优字典.实验表明,与ScSR、SISR、NLIBP、CSSS以及mSSIM等算法相比,本文算法具有更好的超分重建效果.  相似文献   

2.
陈柘  陈海 《国外电子元器件》2014,(2):168-170,173
提出一种基于混合字典的图像稀疏分解去噪方法。使用小波包函数和离散余弦函数构成混合字典,采用匹配追踪算法对图像进行稀疏分解,提取含噪图像中的稀疏成分,最后利用稀疏成分进行图像重构,达到去除图像中噪声的目的。实验中与单一字典稀疏分解去噪算法进行了对比,结果表明,所提出的混合字典稀疏去噪算法可有效提取图像中的稀疏结构,改善重构图像的主客观质量。  相似文献   

3.
过完备字典下的信号稀疏分解能够充分利用信号的结构特征,具有更好的稀疏分解性能。主要研究了跳频信号在过完备字典下的稀疏分解,提出了过完备结构字典下的跳频信号稀疏分解方法。利用跳频信号固有的结构特性,构造更加接近跳频信号结构特征的过完备字典,并采用FFT改进的匹配追踪算法对跳频信号进行稀疏分解。仿真结果表明该方法在分解效果和分解所需时间方面都有很大改善。  相似文献   

4.
提出了一种基于字典学习的运动目标检测方法.该方法首先使用多帧平均方法从训练样本中得到初始背景,再通过BP算法建立背景的初始稀疏表示模型;然后利用视频序列中当前时刻的近邻五帧图像,通过K-SVD方法自适应更新背景数据字典中的原子,使背景稀疏表示模型最优逼近近邻帧背景的观测值;最后将当前帧图像与背景模型进行差分,完成前景运动目标的检测.仿真和对比实验结果表明,对图像信号进行稀疏表示可以有效降低数据的冗余度,减小运行时间,同时在字典更新阶段利用近邻帧图像的相关性特性,能获得鲁棒性较好的背景字典,自动排除伪前景的干扰,从而提高视频序列中的运动目标检测的准确率.  相似文献   

5.
针对单字典学习的稀疏表示超分辨算法不能保证相邻图像块的兼容性而导致稀疏重建后图像质量低的问题,提出了图像块对学习的稀疏表示的改进方法。该方法使用主成份分析法处理训练样本的图像特征块;然后在输入的低分辨率图像块的稀疏表示系数中恢复出高分辨率图像块;最后将低分辨图像块的稀疏表示与高分辨图像块字典组合生成高分辨率图像块的超分辨重建算法。实验数据对于提出的算法能有效地恢复出质量更好的图像且峰值信噪比有所提高。  相似文献   

6.
为了更好地实现图像的去噪效果,提出了一种改进的基于K-SVD(Singular Value Decomposition)字典学习的图像去噪算法。首先,将输入的含噪信号进行K均值聚类分解,将得到的图像块进行稀疏贝叶斯学习和噪声的更新,当迭代到一定次数时继续使用正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法对图像块进行稀疏编码,然后在完成稀疏编码的基础上通过奇异值分解来逐列更新字典,反复迭代至得到过完备字典以实现稀疏表示,最后对处理过的图像进行重构,得到去噪后的图像。实验结果表明,本文的改进算法相对于传统的K-SVD字典的图像去噪能够在保留图像边缘和细节信息的同时,更有效地去除图像中的噪声,具有更好的视觉效果。  相似文献   

7.
基于主成分分析和字典学习的高光谱遥感图像去噪方法   总被引:3,自引:0,他引:3  
高光谱图像变换域各波段图像噪声强度不同,并具有独特的结构。针对这些特点,该文提出一种基于主成分分析(Principal Component Analysis, PCA)和字典学习的高光谱遥感图像去噪新方法。首先,对高光谱数据进行PCA变换得到一组主成分图像;然后,对信息量较小的主成分图像分别采用基于自适应字典的稀疏表示方法和对偶树复小波变换方法去除空间维和光谱维的噪声;最后,通过PCA逆变换得出去噪后的数据。结合主成分分析和字典学习的优势,该文方法相对于传统方法对高光谱图像具有更好的自适应性,在细节得到保留的同时有效地抑制了斑块效应。对模拟和实际高光谱遥感图像的实验结果验证了该文方法的有效性。  相似文献   

8.
传统基于稀疏表示的目标跟踪方法,在目标背景复杂和严重遮挡等一系列场景中的跟踪效果较差,针对这一问题,提出一种基于稀疏表示的、可实时进行更新的字典模板,既保存了目标的原始外观,又可以体现出目标当下的形态,提高目标跟踪算法的性能。通过与不同的主流算法进行测试对比,证明该算法具有更高的准确性。  相似文献   

9.
非相干子字典多原子快速匹配追踪算法   总被引:1,自引:0,他引:1  
从冗余字典中得到信号的最稀疏表示是一个NP难问题,即使是次优的匹配追踪仍然相当复杂.该文提出一种多原子快速匹配追踪算法.该算法首先将冗余字典分解成M个非相干的子字典,每次迭代分别从各子字典中至多选取一个满足条件的原子组成多原子集;最后通过求信号在多原子集上的正交投影,得到信号的多原子稀疏逼近.实验采用真实音频信号进行仿真;结果表明新的算法获得与匹配追踪相当的稀疏逼近性能,同时大大提高了信号稀疏分解的速度.  相似文献   

10.
针对单幅低分辨率图像的超分辨率重建问题,提出了一种基于自训练字典学习的超分辨率重建算法。首先根据图像的退化模型,对输入的低分辨率图像进行降质处理,然后利用 K-SVD 方法训练字典,获得重建所需要的先验知识,最后根据先验知识重建高分辨率图像。仿真实验的结果表明,利用该方法获得的高分辨率图像在视觉效果和客观评价上均优于传统方法,同时算法的时间效率也有很大的提升。  相似文献   

11.
针对传统滤波算法在滤除红外图像噪声时会损失部分有用信息的问题,提出一种基于自适应过完备稀疏表示的红外图像滤波方法。该方法采用K-SVD算法以待滤波的红外图像为样本训练出自适应过完备原子库;采用正交匹配跟踪算法将红外图像信号在该过完备原子库上稀疏分解为稀疏成分和其他成分,稀疏成分对应红外图像中的有用信息,其他成分对应红外图像中的噪声,由稀疏成分重建图像,从而达到消除噪声的目的。实验结果表明:该方法相比传统方法具有更好的滤波效果,重建图像质量较高。  相似文献   

12.
甘涛  何艳敏  朱维乐 《电子学报》2008,36(5):1019-1023
 目前图像稀疏分解的应用还受到过大运算量的阻碍.基于对库原子间互相关信息的估计,提出一种改进的匹配搜索算法.通过自适应预测,有效地降低了单次迭代的内积运算.并行一次选择多个原子,显著地减少了迭代次数,从而大幅度降低了总运算复杂度.实验结果表明,与原算法相比,改进算法在微小精度损失的情况下,表现出明显的速度优势.如进行800个原子的分解,速度提高近43倍.将该算法应用于图像编码中,在低码率下获得了与JPEG2000相当的编码性能.  相似文献   

13.
非局部学习字典的图像修复   总被引:2,自引:0,他引:2  
李民  程建  李小文  乐翔 《电子与信息学报》2011,33(11):2672-2678
该文提出一种新的基于学习的图像修复算法。与经典的稀疏表示模型不同,该文将非局部自相似图像块统一进行联合稀疏表示,训练高效的学习字典,并使自相似块间保持相同的稀疏模式。该方法既确保自相似块投影到稀疏空间后也具有相似性,也较好地保留了自相似块间的相关性信息,更有效地建立了它们的联合稀疏关联,并将这种关联作为先验知识来指导图像的修复。该算法使用大量自然图像样本来训练初始的过完备字典,既利用了样本图像的先验知识,又充分考虑了待处理图像本身的相关信息,自适应性强。通过对自然图像进行大﹑小范围图像修复和文字去除实验,该文方法均取得不错的修复效果。  相似文献   

14.
基于图像块分类稀疏表示的超分辨率重构算法   总被引:6,自引:0,他引:6       下载免费PDF全文
练秋生  张伟 《电子学报》2012,40(5):920-925
 目前基于图像块稀疏表示的超分辨率重构算法对所有图像块都用同一字典表示,不能反映不同类型图像块间的差别.针对这一缺点,本文提出基于图像块分类稀疏表示的方法.该方法先利用图像局部特征将图像块分为平滑、边缘和不规则结构三种类型,其中边缘块细分为多个方向.然后利用稀疏表示方法对边缘和不规则结构块分别训练各自对应的低分辨率和高分辨率字典.重构时对平滑块利用简单双三次插值方法,边缘和不规则结构块由其对应的高、低分辨率字典通过正交匹配追踪算法重构.实验结果表明,与单字典稀疏表示算法相比,本文算法对图像边缘部分重构质量明显改善,同时重构速度显著提高.  相似文献   

15.
分块自适应图像稀疏分解   总被引:1,自引:0,他引:1  
针对图像稀疏分解的计算时间复杂度非常高这个问题,提出了分块自适应图像稀疏分解算法。该算法根据稀疏分解计算时间复杂度和待分解图像大小之间的关系。把待分解图像分成互不重叠的小块。然后对每个小块图像进行稀疏分解。根据每一块的复杂程度。自适应地决定稀疏分解的结束。实验结果表明。在分解原子个数相近或相同的条件下。新算法对稀疏分解后重建图像比在整幅图像上进行稀疏分解重建的图像质量下降0.5dB。但计算速度提高了约15倍。  相似文献   

16.
孙玉宝  吴敏  韦志辉  肖亮  冯灿 《电子学报》2009,37(9):1971-1976
 提出了一种基于稀疏表示的脑电棘波检测算法,首先以高斯函数及其一、二阶导数为原子的生成函数构建了一个冗余多成份字典,再应用匹配追踪算法获取脑电信号在此字典下的M项稀疏逼近,由该逼近的导数信息与原子的结构参数可准确度量瞬时波形的形态结构特征,进而提出基于形态结构匹配的棘波检测算法,克服了Gabor字典不能识别周期化棘波序列的缺点,同时能够有效去除背景节律与伪迹的影响,检测结果表明该算法针对临床EEG信号的检测率高达93.9%,正确率高达88.0%.  相似文献   

17.
稀疏信号表示在与信号结构匹配方面具有很大的灵活性,可以用于逆合成孔径雷达(ISAR)成像.目前常用的算法基寻踪法和FOCUSS法都是并行算法,计算量很大.而匹配追踪法是一种逐步选取基函数的算法,计算量小.因而是一种更有效的成像算法.对于仿真和真实ISAR雷达数据,匹配追踪法得到的图像分辨率大大高于传统的傅里叶变换方法.故表明匹配追踪法是一种有效的ISAR超分辨成像方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号