首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Tridentate N,N,N‐pyridinebisimidazolines have been studied as new ligands for the enantioselective transfer hydrogenation of prochiral ketones. High yields and excellent enantioselectivity up to >99 % ee have been achieved with an in situ generated catalytic system containing dichlorotris(triphenylphosphine)ruthenium and 2,6‐bis‐([4R,5R]‐4,5‐diphenyl‐4,5‐dihydro‐1H‐imidazol‐2‐yl)‐pyridine ( 3a ) in the presence of sodium isopropoxide.  相似文献   

2.
We present a new asymmetric synthesis of β‐hydroxycarboxylic acids from ketones, performed by carboxylation using CO2 followed by asymmetric hydrogenation. First, the carboxylation of ketones gives β‐ketocarboxylic acids. The effects of temperature, reaction time, and amount of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) promoter on the carboxylation were investigated. The DBU can be recycled. For the second step, the asymmetric hydrogenation of these β‐ketocarboxylic acids, we determined the effect of solvent choice, H2 pressure, and substrate substitution. Hydrogenation yield and enantioselectivity are solvent‐dependent, and the mechanism could proceed through hydrogenation of either the enol or the keto forms of the bound substrate. This synthesis is industrially advantageous due to the limited number of reactants required, their low‐cost, and the potential for recycling unused materials.  相似文献   

3.
Enantioselective reactions of simple ketones, α,α‐ and β,β‐dialkoxy ketones, and α‐alkoxy ketones with trimethylsilyl cyanide catalyzed by the bimetallic systems of amino acid/BINAP/ruthenium(II) complexes and lithium phenoxide have been studied [BINAP=2,2′‐bis(diphenylphosphino)‐1,1′‐binaphthyl]. The Ru(PhGly)2(BINAP)‐lithium phenoxide system showed high enantioselectivity for the reaction of acetophenone derivatives to afford the cyanated products in up to 90% ee [PhGly=phenylglycinate]. For the cyanosilylation of dialkoxy ketones and α‐alkoxy ketones, the Ru(t‐Leu)2(BINAP)‐lithium phenoxide system exhibited the best catalyst performance to produce the cyanohydrin derivatives in up to 99% ee and 98% ee, respectively [t‐Leu=tert‐leucinate]. The excellent catalytic activity resulted in complete conversion in the reaction with a substrate‐to‐catalyst molar ratio (S/C) of 10,000 in the best cases.  相似文献   

4.
A large library of pyranoside‐based hydroxyamide and thioamide ligands has been synthesized for asymmetric transfer hydrogenation in an attempt to expand the scope of the substrates to cover a broader range of challenging heteroaromatic and aryl/fluoroalkyl ketones. These ligands have the advantage that they are prepared from commercial D ‐glucose, D ‐glucosamine and α‐amino acids, inexpensive natural chiral feedstocks. By carefully selecting the ligand components (substituents/configurations at the amide/thioamide moiety, the position of amide/thioamide group and the configuration at C‐2), we found that pyranoside‐based thioamide ligands provided excellent enantioselectivities (in the best cases, ees of >99% were achieved) in a broad range of ketones, including the less studied heteroaromatics and challenging aryl/fluoroalkyls. Note that both enantiomers of the reduction products can be obtained with excellent enantioselectivities by simply changing the absolute configuration of the thioamide substituent.

  相似文献   


5.
A highly efficient and enantioselective hydrogenation of unprotected β‐ketoenamines catalyzed with ruthenium(II) dichloro{(S)‐(−)‐2,2′‐bis[di(3,5‐xylyl)phosphino]‐1,1′‐binaphthyl}[(2S)‐(+)‐1,1‐bis(4‐methoxyphenyl)‐3‐methyl‐1,2‐butanediamine] {Ru[(S)‐xylbinap][(S)‐daipen]Cl2} has been successfully developed. This methodology provides a straightforward access to free γ‐secondary amino alcohols, which are key building blocks for a variety of pharmaceuticals and natural products, with high yields (>99%) and excellent enantioselectivities (up to 99% ee) in all cases.  相似文献   

6.
The BINAP/1,2‐diphenylethylenediamine RuCl2 complexes bound to a polystyrene resin act as precatalysts for asymmetric hydrogenation of various simple ketones. The enantioselectivity, turnover number, and turnover frequency are comparable to those attained under homogeneous conditions.  相似文献   

7.
A new and efficient catalytic asymmetric synthesis of the potent cannabinoid receptor agonist (−)‐CP‐55940 has been developed by using ruthenium‐catalyzed asymmetric hydrogenation of racemic α‐aryl ketones via dynamic kinetic resolution (DKR) as a key step. With RuCl2‐SDPs/diamine [SDPs=7,7′‐bis(diarylphophino)‐1,1′‐spirobiindane] catalysts the asymmetric hydrogenation of racemic α‐arylcyclohexanones via DKR provided the corresponding cis‐β‐arylcyclohexanols in high yields with up to 99.3% ee and >99:1 cis‐selectivities. Both ethylene ketal group at the cyclohexane ring and ortho‐methoxy group at the phenyl ring of the substrates 6 have little effect on the selectivity and reactivity of the hydrogenations. Based on this highly efficient asymmetric ketone hydrogenation, (−)‐CP‐55940 was synthesized in 13 steps (the longest linear steps) in 14.6% overall yield starting from commercially available 3‐methoxybenzaldehyde and 1,4‐cyclohexenedione monoethylene acetal.  相似文献   

8.
The regioselective synthesis of β,γ‐unsaturated ketones from terminal alkynes is achieved by cooperative action of tris(acetonitrile)pentamethylcyclopentadieneruthenium hexafluorophosphate [Cp*Ru(NCMe)3+ PF6] and para‐toluenesulfonic acid catalysts. These allyl ketones undergo direct regioselective hydroarylation/Friedel–Crafts reaction to introduce an electron‐rich aryl group at the γ‐position in the presence of ligand‐free silver triflate (AgOTf) catalyst. Both catalytic reactions take place with atom economy and provide an alternative to the synthesis of a variety of allyl ketones and γ‐arylated ketones.  相似文献   

9.
A chiral diamine‐based homogeneous cationic rhodium catalyst was developed and two heterogeneous cationic rhodium catalysts were obtained via the encapsulation of the homogeneous cationic rhodium catalyst within Me‐SBA‐15 and Me‐SBA‐16. All these catalysts presented excellent catalytic activities and high enantioselectivities in ultrasound‐promoted asymmetric transfer hydrogenation of aromatic ketones and represent a successful use of the ion‐pair immobilization strategy. More importantly, the encapsulation of the cationic rhodium functionality within Me‐SBA‐16 had an obvious high recyclability, in which the recycled catalyst could be reused nine times without significantly affecting its enantioselectivity, showing good potential in industrial application.  相似文献   

10.
Both enantiomers of 3‐hydroxy‐2‐methylpropanoic acid tert‐butyl ester were prepared with high enantioselectivity (up to 94 %) through a ruthenium‐SYNPHOS®‐promoted asymmetric hydrogenation reaction using an atom‐economic transformation from simple and inexpensive precursors.  相似文献   

11.
Enantioselective syntheses of several paraconic acids have been achieved using catalyzed asymmetric hydrogenation of β‐keto esters with SYNPHOS® as a ligand. This strategy allowed the short synthesis of biologically active (−)‐methylenolactocin 1 , (−)‐protolichesterinic acid 2 , (−)‐phaseolinic acid 3 and (+)‐roccellaric acid 4 .  相似文献   

12.
Chlorosulfonylated polystyrene, a commodity resin, reacts with enantiopure 1,2‐diamines to afford, in a single step, high loading catalytic resins involving monosulfonylated 1,2‐diamino moieties. These functional polymers form stable (p‐cymene)ruthenium chloride [RuCl(p‐cymene)] complexes that efficiently catalyze (down to S/C=150) the asymmetric transfer hydrogenation (ATH) of alkyl aryl ketones with formic acid‐triethylamine under essentially solvent‐free (down to 0.25 mL mmol−1) reaction conditions. Among these resins, the immobilized version of TsDPEN stands out as a most practical catalyst for ATH: Uniformly high enantioselectivities are achieved with its use at low catalyst loading, and the resin can be recycled with virtually no limits.  相似文献   

13.
P‐Phos‐ruthenium‐DPEN precatalysts have been found to be efficient for the asymmetric hydrogenation of various ferrocenyl ketones. The use of (R)‐xylyl‐P‐PhosRuCl2(R,R)‐DPEN generated chiral ferrocenylethanol in 99.3% e.e. with >99% conversion in a 150‐g scale.  相似文献   

14.
A highly efficient strategy for the synthesis of a series of C3*‐TunePhos chiral diphosphine ligands was well established with several remarkable features. The synthetic utility of these ligands was explored for the ruthenium‐catalyzed asymmetric hydrogenation of β‐keto esters. Up to 99% ee values were achieved for the enantioselective synthesis of β‐hydroxy acid derivatives, which are very important chiral building blocks for the synthesis of a variety of natural products and biologically active molecules.  相似文献   

15.
New 3rd generation designer ansa‐ruthenium(II) complexes featuring N,C‐alkylene‐tethered N,N‐dialkylsulfamoyl‐DPEN/η6‐arene ligands, exhibited good catalytic performance in the asymmetric transfer hydrogenation (ATH) of various classes of (het)aryl ketones in formic acid/triethylamine mixture. In particular, benzo‐fused cyclic ketones furnished 98 to >99.9% ee using a low catalyst loading.

  相似文献   


16.
Novel P2N4‐donors containing chiral 22‐membered macrocyclic ligands have been synthesized and the structures have been determined by an X‐ray diffraction study. The catalytic systems in situ generated from triiron dodecarbonyl, Fe3(CO)12, and the chiral macrocyclic ligand exhibited high activity (TOF up to 1940 h−1) and excellent enantioselectivity with up to 99% ee in the asymmetric transfer hydrogenation of various aromatic ketones.  相似文献   

17.
Ruthenium complexes with the formulae Ru(CO)2(PR3)2(O2CPh)2 [ 6a – h ; R=n‐Bu, p‐MeO‐C6H4, p‐Me‐C6H4, Ph, p‐Cl‐C6H4, m‐Cl‐C6H4, p‐CF3‐C6H4, m,m′‐(CF3)2C6H3] were prepared by treatment of triruthenium dodecacarbonyl [Ru3(CO)12] with the respective phosphine and benzoic acid or by the conversion of Ru(CO)3(PR3)2 ( 8e – h ) with benzoic acid. During the preparation of 8 , ruthenium hydride complexes of type Ru(CO)(PR3)3(H)2 ( 9g , h ) could be isolated as side products. The molecular structures of the newly synthesized complexes in the solid state are discussed. Compounds 6a – h were found to be highly effective catalysts in the addition of carboxylic acids to propargylic alcohols to give valuable β‐oxo esters. The catalyst screening revealed a considerably influence of the phosphine′s electronic nature on the resulting activities. The best performances were obtained with complexes 6g and 6h , featuring electron‐withdrawing phosphine ligands. Additionally, catalyst 6g is very active in the conversion of sterically demanding substrates, leading to a broad substrate scope. The catalytic preparation of simple as well as challenging substrates succeeds with catalyst 6g in yields that often exceed those of established literature systems. Furthermore, the reactions can be carried out with catalyst loadings down to 0.1 mol% and reaction temperatures down to 50 °C.

  相似文献   


18.
An improved method for the synthesis of tethered ruthenium(II) complexes of monosulfonylated diamines is described, together with their application to the hydrogenation of ketones and aldehydes. The complexes were applied directly, in their chloride form, to asymmetric ketone hydrogenation, to give products in excess of 99% ee in the best cases, using 30 bar of hydrogen at 60 °C, and to the selective reduction of aldehydes over other functional groups.  相似文献   

19.
Iridium complexes of planar-chiral ferrocenyl phosphine-thioether ligands were tested in the hydrogenation of simple ketones. Optimization of the conditions led to a highly active catalytic system with turnover numbers up to 915 and turnover frequencies up to ca. 250 h−1. Furthermore, very high enantioselectivities (up to >99 %) together with complete conversions were obtained for the asymmetric hydrogenation of various acetophenones at 10 °C.  相似文献   

20.
A new kind of dendronized polymeric chiral BINAP ligands has been synthesized and applied to the Ru‐catalyzed asymmetric hydrogenation of simple aryl ketones and 2‐arylacrylic acids. These dendronized poly(Ru‐BINAP) catalysts exhibited high catalytic activity and enantioselectivity, very similar to those obtained with the corresponding parent Ru(BINAP) and the Ru(BINAP)‐cored dendrimers. It was found that the pendant dendrons had a major impact on the solubility and the catalytic properties of the polymeric ligands. These polymeric catalysts could be easily recovered from the reaction solution by using solvent precipitation, and the reused catalyst showed no loss of activity or enantioselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号