首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palladium‐catalysed monophosphorylation of (R)‐2,2′‐bisperfluoroalkanesulfonates of BINOL (RF=CF3 or C4F9) by a diaryl phosphinate [Ar2P(O)H] followed by phosphine oxide reduction (Cl3SiH) then lithium diisopropylamide‐mediated anionic thia‐Fries rearrangement furnishes enantiomerically‐pure (R)‐2′‐diarylphosphino‐2′‐hydroxy‐3′‐perfluoralkanesulfonyl‐1,1′‐binaphthalenes [(R)‐ 8ab and (R)‐ 8g–j ], which can be further diversified by Grignard reagent (RMgX)‐mediated CF3‐displacement [→(R)‐ 8c–f ]. Coupling of (R)‐ 8a–j with (S)‐1,1′‐binaphthalene‐2,2′‐dioxychlorophosphine (S)‐ 9 generates 3′‐sulfonyl BINAPHOS ligands (R,S)‐ 10a–j in good yields (43–82%). These new ligands are of utlility in the asymmetric hydrophosphonylation of styrene ( 1 ) by 4,4,5,5‐tetramethyl‐1,3,2‐dioxaphospholane 2‐oxide ( 2 ), for which a combination of the chiral ligands with either [Pd(Cp)(allyl)] or [Pd(allyl)(MeCN)2]+/NaCH(CO2Me)2 proves to be a convenient and active pre‐catalyst system. A combination of an electron‐rich phosphine moiety and an electron‐deficient 3′‐sulfone moiety provides the best enantioselectivity to date for this process, affording the branched 2‐phenethenephosphonate, (−)‐iso‐ 3 , in up to 74% ee with ligand (R,S)‐ 10i , where Ar=p‐anisyl and the 3′‐SO2R group is triflone.  相似文献   

2.
The presence of the additional heterocyclic nitrogen atoms in chiral P,N ligands has an important influence on the asymmetric catalysis, and a clear trend was observed in the present research that the enantioselectivity and reactivity were significantly increased by raising the number of heterocyclic nitrogen atoms in these P,N ligands. Through finely tuning the number of heterocyclic nitrogen atoms, a new family of ferrocene‐based chiral phosphine‐triazine ligands with three heterocyclic nitrogen atoms has been developed and successfully applied in Pd‐catalyzed asymmetric allylic substitution. Up to 99% ee with 99% yield of allylic alkylation products and 94% ee of allylic amination products have been obtained by the use of ligand (Rc,Sp)‐ 1f with a 4,6‐diphenoxy‐1,3,5‐triazine moiety.  相似文献   

3.
An associative mechanism has been computationally characterized for the Stille cross‐coupling of vinyl bromide and trimethylvinylstannane catalyzed by PdL2 (L=PMe3, AsMe3) with or without dimethylformamide as coordinating ligand. All the species along the catalytic cycles that start from both the cis‐ and the trans‐PdL(Y)(vinyl)Br complexes (Y=L or S; L=PMe3, AsMe3 or PH3; S=DMF) have been located in the gas phase and in the presence of polar solvents. Computations support the central role of species trans‐PdL(DMF)(vinyl)Br which react by ligand dissociation and stannane coordination in the rate‐limiting transmetalation step via a puckered four‐coordinate (at palladium) transition state comprised of Pd, Br, Sn and sp2 C atoms. A donating solvent may enter the catalytic cycle assisting isomerization of cis‐PdL2(vinyl)Br to trans‐PdL(DMF)(vinyl)Br complexes via a pentacoordinate square pyramidal Pd intermediate. In keeping with experimental observations, the activation energies of the catalytic cycles with arsines as Pd ligands are lower than those with phosphines. Polytopal rearrangements from the three‐coordinate T‐shaped Pd complexes resulting from transmetalation account for the isomerization and the C C bond formation on the reductive elimination step.  相似文献   

4.
The influence of several phosphine ligands on the activity, selectivity and stability of the catalytic system Pd(acac)2, ligand, [HOEt2][BF4] was studied in the dimerization of methyl acrylate (MA). It was found that the catalyst's activity increased with increasing the basicity of the monodentate ligands used, whereas bulky phosphines lowered the linearity of the dimers and the reaction rates. With chelating P N‐, P P‐, and P As‐ligands the Pd‐catalyst could be efficiently stabilized during the reaction. The use of 1‐dibutylphosphino‐2‐dimethylaminoethane as ammonium tetrafluoroborate salt allowed the highest overall activity.  相似文献   

5.
A search for the large‐scale preparation of (5S)‐5,6‐(isopropylidenedioxy)‐3‐oxohexanoates ( 2 ) – a key intermediate in the synthesis of pharmacologially important statins – starting from (S)‐malic acid is described. The synthesis of the required initial compound methyl (3S)‐3,4‐(isopropylidenedioxy)butanoate ( 1 ) by Moriwake’s reduction of dimethyl (S)‐malate ( 3 ) has been improved. Direct 2‐C chain elongation of ester 1 using the lithium enolate of tert‐butyl acetate has been shown to be successful at a 3‐ to 5‐fold excess of the enolate. Unfortunately, the product, tert‐butyl (5S)‐5,6‐(isopropylidenedioxy)‐3‐oxohexanoate ( 2a ) is unstable during distillation. Ethyl (5S)‐5,6‐(isopropylidenedioxy)‐3‐oxohexanoate ( 2b ) was prepared alternatively on a multigram scale from (3S)‐3,4‐(isopropylidenedioxy)butanoic acid ( 7 ) by activation with N,N′‐carbonyldiimidazole and subsequent reaction with Mg(OOCCH2COOEt)2. A convenient pathway for the in situ preparation of the latter is also described. Ethyl ester ( 2b ) can be advantageously purified by distillation. The stereochemistry of the catalytic hydrogenation of β‐keto ester ( 2b ) to ethyl (5S)‐5,6‐(isopropylidenedioxy)‐3‐hydrohyhexanoate (syn‐ 6 and anti‐ 6 ) has been studied using a number of homogeneous achiral and chiral Rh(I) and Ru(II) complexes with phosphine ligands. A comparison of Rh(I) and Ru(II) catalysts with (S)‐ and (R)‐BINAP as chiral ligands revealed opposite activity in dependence on the polarity of the solvent. No influence of the chiral backbone of substrate 2b on the enantioselectivity was noted. A ratio of syn‐ 6 /anti‐ 6 =2.3 was observed with an achiral (Ph3P)3RuCl2 catalyst. Ru[(R)‐Tol‐BINAP]Cl2 neutralized with one equivalent of AcONa afforded the most efficient catalytic system for the production of optically pure syn‐(5S)‐5,6‐isopropylidenedioxy‐3‐hydroxyhexanoate (syn‐ 6 ) at a preparative substrate/catalyst ratio of 1000:1.  相似文献   

6.
Catalytic asymmetric conjugate arylation of racemic 6‐substituted cyclohexenones with arylboronic acids was catalyzed by 3 mol % of chiral amidophosphane‐[RhCl(C2H4)]2 in a 10:1 mixture of 1,4‐dioxane and water at 70 °C to afford a nearly 1:1 mixture of trans‐ and cis‐5‐aryl‐2‐substituted cyclohexanones in high enantioselectivity, which was subsequently epimerized with sodium ethoxide in ethanol to give thermodynamically stable trans‐5‐aryl‐2‐substituted cyclohexanones with 99–97 % ee in high two‐step yields.  相似文献   

7.
Phosphine complexes of cobalt halide salts activated by diethylaluminum chloride are shown to yield highly active catalysts in the hydrovinylation of styrene, with unprecedented high selectivity to the desired product 3‐phenyl‐1‐butene (3P1B). Double‐bond isomerization, a common problem in codimerization reactions, only occurs after full conversion with these catalyst systems, even at elevated temperature. The most active catalysts are based on cobalt halide species combined with either C1‐ or C2‐bridged diphosphines, heterodonor P,N or P,O ligands, flexible bidentate phosphine ligands or monodentate phosphine ligands. Kinetic investigations show an order >1 in catalyst, which indicates either the involvement of dinuclear species in the catalytic cycle or partial catalyst decomposition via a bimolecular pathway.  相似文献   

8.
The synthesis of silica‐ and monolith‐supported Grubbs–Herrmann‐type catalysts is described. Two polymerizable, carboxylate‐containing ligands, exo, exo‐7‐oxanorborn‐2‐ene‐5,6‐dicarboxylic anhydride and 7‐oxanorborn‐2‐ene‐5‐carboxylic acid were surface‐immobilized onto silica‐ and ring‐opening metathesis (ROMP‐) derived monolithic supports using “grafting‐from” techniques. The “1st generation Grubbs catalyst”, RuCl2(CHPh)(PCy3)2, was used for these purposes. In addition, a poly(norborn‐2‐ene‐b‐exo, exo‐norborn‐2‐ene‐5,6‐dicarboxylic anhydride)‐coated silica 60 was prepared. The polymer supported anhydride and carboxylate groups were converted into the corresponding mono‐ and disilver salts, respectively, and reacted with the Grubbs–Herrmann catalyst RuCl2(CHPh)(IMesH2)(PCy3) [IMesH2=1,3‐bis(2,4,6‐trimethylphenyl)‐4,5‐dihydroimidazol‐2‐ylidene]. Heterogenization was accomplished by exchange of one chlorine ligand with the polymeric, immobilized silver carboxylates to yield monolith‐supported catalysts 4, 5 , and 6 as well as silica‐supported systems 7, 8 and 9 . The actual composition of these heterogenized catalysts was proven by the synthesis of a homogeneous analogue, RuCl[7‐oxanorbornan‐2‐(COOAg)‐3‐COO](CHPh)(IMesH2)(PCy3) ( 3 ). All homogeneous and heterogeneous catalysts were used in ring‐closing metathesis (RCM) of diethyl diallylmalonate, 1,7‐octadiene, diallyldiphenylsilane, methyl trans‐3‐pentenoate, diallyl ether, N,N‐diallyltrifluoracetamide and t‐butyl N,N‐diallylcarbamate allowing turnover numbers (TON's) close to 1000. In a flow‐through set‐up, an auxiliary effect of pendant silver carboxylates was observed with catalyst 5 , where the silver moiety functions as a (reversible) phosphine scavenger that both accelerates initiation and stabilizes the catalyst by preventing phosphine elution. Detailed catalytic studies were carried out with the monolith‐supported systems 4 and 6 in order to investigate the effects of temperature and chain‐transfer agents (CTA's) such as cis‐1,4‐diacetoxybut‐2‐ene. In all RCM experiments Ru‐leaching was low, resulting in a Ru‐content of the RCM products ≤3.5 μg/g (3.5 ppm).  相似文献   

9.
Palladium‐catalyzed C N bond forming reactions of 6‐bromo‐ as well as 6‐chloropurine ribonucleosides and the 2′‐deoxy analogues with arylamines are described. Efficient conversions were observed with palladium(II) acetate/Xantphos/cesium carbonate, in toluene at 100 °C. Reactions of the bromonucleoside derivatives could be conducted at a lowered catalytic loading [5 mol% Pd(OAc)2/7.5 mol% Xantphos], whereas good product yields were obtained with a higher catalyst load [10 mol% Pd(OAc)2/15 mol% Xantphos] when the chloro analogue was employed. Among the examples evaluated, silyl protection for the hydroxy groups appears better as compared to acetyl. The methodology has been evaluated via reactions with a variety of arylamines and by synthesis of biologically relevant deoxyadenosine and adenosine dimers. This is the first detailed analysis of aryl amination reactions of 6‐chloropurine nucleosides, and comparison of the two halogenated nucleoside substrates.  相似文献   

10.
Chromium complexes with N,N,N‐tridentate ligands, LCrCl3 (L = 2,6‐bis{(4S)‐(?)‐isopropyl‐2‐oxazolin‐2‐yl}pyridine ( 1 ), 2,2′:6′,2″‐terpyridine ( 2 ), and 4,4′,4″‐tri‐tert‐butyl‐2,2′:6′,2″‐terpyridine ( 3 )), were prepared. The structures of 1 and 2 were determined by X‐ray crystallography. Upon activation with modified methylaluminoxane (MMAO), 1 catalyzed the polymerization of 1,3‐butadiene, while 2 and 3 was inactive. The obtained poly(1,3‐butadiene) obtained with 1 ‐MMAO was found to have completely trans‐1,4 structure. The 1 ‐MMAO system also showed catalytic activity for the polymerization of isoprene to give polyisoprene with trans‐1,4 (68%) and cis‐1,4 (32%) structure. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
The diastereomeric 1,4‐diphosphine ligands, (S,S,S,S)‐ 1a , (R,S,S,R)‐ 1b and (R,S,S,S)‐ 1c , with the imidazolidin‐2‐one backbone were synthesized, and utilized for an investigation of the effects of backbone chirality on the enantioselectivity in the Rh(I)‐catalyzed hydrogenation of various functionalized olefinic substrates. It was found that the catalytic efficiencies are largely dependent on the configurations of the α‐carbons to phosphine. Thus, the Rh complex of the pseudo‐C2‐symmetrical diphosphine, (R,S,S,S)‐ 1c , showed excellent enantioselectivities (93.0–98.6% ees) in the hydrogenations of a broad spectrum of substrates, and especially in the hydrogenations of methyl α‐(N‐acetyamino)‐β‐arylacrylates (95.3–97.0% ees). However, the enantioselectivities obtained with the C2‐symmetrical (R,S,S,R)‐ 1b were largely dependent on the substrate (19.8–97.3% ees). The Rh complex of ligand 1a having the (S,S,S,S)‐configuration showed the lowest catalytic efficiency for all of the substrates examined (0–84.8% ees).  相似文献   

12.
C2‐Symmetrical, enantiopure 2,6‐di[1‐(1‐aziridinyl)alkyl]pyridines (DIAZAPs) were prepared by a high‐yielding, three‐step sequence starting from 2,6‐pyridinedicarbaldehyde and (S)‐valinol or (S)‐phenylglycinol. The new compounds were tested as ligands in palladium‐catalyzed allylation of carbanions in different solvents. Almost quantitative yield and up to 99 % enantiomeric excess were obtained in the reactions of the enolates derived from malonate, phenyl‐ and benzylmalonate dimethyl esters with 1,3‐diphenyl‐2‐propenyl ethyl carbonate.  相似文献   

13.
A novel chiral H8‐1,1′‐binaphthyl‐based amino alcohol ligand (1Ra,2S,3R)‐ 2 has been synthesized and applied in the direct nucleophilic addition of organozincs (alkynylzinc and arylzinc prepared in situ) to aldehydes, yielding the corresponding optically active propargylic alcohols and diarylmethanols in high yields and good to excellent enantioselectivities. For the asymmetric arylation reaction, one catalyst (1Ra,2S,3R)‐ 2 can afford both enantiomers of many pharmaceutically interesting diarylmethanols by a proper combination of various arylzinc reagents and aldehydes.  相似文献   

14.
An efficient, selective and recoverable catalytic system for ligand‐free aqueous Heck reactions using hydroxypropylated cyclodextrins (HPCDs) and palladium on calcium carbonate (Pd/CaCO3) is highlighted. Remarkably, stereo‐ and chemoselectivities could be tuned by the cavity size of cyclodextrins, exploiting the relevance of host‐guest interactions. UV‐Vis experiments have led to strong evidence concerning an interplay between Pd(II) and α‐HPCD, possibly ascribed to a reduction/stabilization effect of CDs. Unexpectedly, hydroarylation was the favored pathway with acrylonitrile which provided access to 3‐phenylpropionitrile derivatives without usual hydride donors. Finally, determination of soluble Pd(0/II) via AAS enabled the definition of a predominant homogeneous mechanism in which TONs over 5000 were observed.  相似文献   

15.
Position and configuration isomers of conjugated linoleic acid (CLA), from 7, 9‐ through 12, 14‐C18:2, were synthesized by directed sequential isomerizations of a mixture of rumenic (cis‐9, trans‐11 C18:2) and trans‐10, cis‐12 C18:2 acids. Indeed, the synthesized conjugated fatty acids cover the range of unsaturated systems as found in milk fat CLA. The two‐step sequence consisted in initial sigmatropic rearrangement of cis/trans CLA isomers at 200 °C for 13 h under inert atmosphere (Helium, He), followed by selenium‐catalyzed geometrical isomerization of double bonds at 120 °C for 20 h under He. Product analysis was achieved by gas‐liquid chromatography using a 120 m polar capillary column coated with 70% cyanoalkylpolysiloxane equivalent polymer. Migration of conjugated systems was geometrically controlled as follows: the cis‐Cn, trans‐Cn+2 double bond system was rearranged through a pericyclic [1, 5] sigmatropic mechanism into a trans‐Cn‐1, cis‐Cn+1 unsaturated system, while the trans‐Cn, cis‐Cn+2 double bond system was rearranged through a similar pericyclic mechanism into a cis‐Cn+1, trans‐Cn+3 unsaturated system. Selenium‐catalyzed geometrical isomerization under mild conditions then allowed cis/trans double bond configuration transitions, resulting in the formation of all cis, all trans, cis‐trans and trans‐cis isomers. A sequential combination of the two reactions resulted in a facile controlled synthesis of CLA isomers, useful for the chromatographic identification of milk fat CLA, as well as for the preparation of CLA standard mixture.  相似文献   

16.
(11bR,11′bR)‐4,4′‐(1,2‐Phenylene)bis[4,5‐dihydro‐3H‐dinaphtho[2,1‐c:1′,2′‐e]phosphepin] [abbreviated as (R)‐BINAPHANE], (3R,3′R,4S,4′S,11bS,11′bS)‐4,4′‐bis(1,1‐dimethylethyl)‐4,4′,5,5′‐tetrahydro‐3,3′‐bi‐3H‐dinaphtho[2,1‐c:1′,2′‐e]phosphepin [(S)‐BINAPINE], (1S,1′S,2R,2′R)‐1,1′‐bis(1,1‐dimethylethyl)‐2,2′‐biphospholane [(S,S,R,R)‐TANGPHOS] and (2R,2′R,5R,5′R)‐1,1′‐(1,2‐phenylene)bis[2,5‐bis(1‐methylethyl)phospholane] [(R,R)‐i‐Pr‐DUPHOS] are C2‐bridged chiral diphosphines that form stable complexes with palladium(II) and platinum(II) containing a five‐membered chelate ring. The Pd(II)‐BINAPHANE catalyst displayed good to excellent enantioselectivities with ee values as high as 99.0% albeit in low yields for the carbonyl‐ene reaction between phenylglyoxal and alkenes. Its Pt(II) counterpart afforded improved yields while retaining satisfactory enantioselectivity. For the carbonyl‐ene reaction between ethyl trifluoropyruvate and alkenes, the Pd(II)‐BINAPHANE catalyst afforded both good yields and extremely high enantioselectivities with ees as high as 99.6%. A comparative study on the Pd(II) catalysts of the four C2‐bridged chiral diphosphines revealed that Pd(II)‐BINAPHANE afforded the best enantioselectivity. The ee values derived from Pd(II)‐BINAPHANE are much higher than those derived from the other three Pd(II) catalysts. A comparison of the catalyst structures shows that the Pd(II)‐BINAPHANE catalyst is the only one that has two bulky (R)‐binaphthyl groups close to the reaction site. Hence it creates a deep chiral space that can efficiently control the reaction behavior in the carbonyl‐ene reactions resulting in excellent enantioselectivity.  相似文献   

17.
4‐(4′‐Aminophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( 1 ) was reacted with 1,8‐naphthalic anhydride ( 2 ) in a mixture of acetic acid and pyridine (3 : 2) under refluxing temperature and gave 4‐(4′‐N‐1,8‐naphthalimidophenyl)‐1,2,4‐triazolidine‐3,5‐dione ( NIPTD ) ( 3 ) in high yield and purity. The compound NIPTD was reacted with excess n‐propylisocyanate in N,N‐dimethylacetamide solution and gave 1‐(n‐propylamidocarbonyl)‐4‐[4′‐(1,8‐naphthalimidophenyl)]‐1,2,4‐triazolidine‐3,5‐dione ( 4 ) and 1,2‐bis(n‐propylamidocarbonyl)‐4‐[4′‐(1,8‐naphthalimidophenyl)]‐1,2,4‐ triazolidine‐3,5‐dione ( 5 ) as model compounds. Solution polycondensation reactions of monomer 3 with hexamethylene diisocyanate ( HMDI ), isophorone diisocyanate ( IPDI ), and tolylene‐2,4‐diisocyanate ( TDI ) were performed under microwave irradiation and conventional solution polymerization techniques in different solvents and in the presence of different catalysts, which led to the formation of novel aliphatic‐aromatic polyureas. The polycondensation proceeded rapidly, compared with conventional solution polycondensation, and was almost completed within 8 min. These novel polyureas have inherent viscosities in a range of 0.06–0.20 dL g?1 in conc. H2SO4 or DMF at 25°C. Some structural characterization and physical properties of these novel polymers are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2861–2869, 2003  相似文献   

18.
PPARγ agonist DIM‐Ph‐4‐CF 3 , a template for RXRα agonist (E)‐3‐[5‐di(1‐methyl‐1H‐indol‐3‐yl)methyl‐2‐thienyl] acrylic acid: DIM‐Ph‐CF3 is reported to inhibit cancer growth independent of PPARγ and to interact with NR4A1. As both receptors dimerize with RXR, and natural PPARγ ligands activate RXR, DIM‐Ph‐4‐CF3 was investigated as an RXR ligand. It displaces 9‐cis‐retinoic acid from RXRα but does not activate RXRα. Structure‐based direct design led to an RXRα agonist.

  相似文献   


19.
In the presence of Na2CO3 (1S,3S)‐ and (1R,3S)‐1‐(2,2‐dimethoxyethyl)‐2‐(1,3‐dioxobutyl)‐3‐(1,3‐dioxo‐butyl)oxymethyl‐1,2,3,4‐tetrahydrocarboline ( 1 ) were transformed into (1S,3S)‐ and (1R,3S)‐1‐(2,2‐dimethoxyethyl)‐2‐(1,3‐dioxobutyl)‐3‐hydroxymethyl‐1,2,3,4‐tetrahydrocarboline ( 2 ), which were cyclized to (6S)‐3‐acetyl‐6‐hydroxymethyl‐4,6,7,12‐tetrahydro‐4‐oxoindolo[2,3‐a]quinolizine ( 4 ), via(6S,12bS)‐ and (6S,12bR)‐3‐acetyl‐2‐hydroxyl‐6‐hydroxymethyl‐1,2,3,4,6,7,12,12b‐octahydro‐4‐oxoindolo[2,3‐a]quinoline ( 3 ). (6S)‐ 4 was coupled with Boc‐Gly, Boc‐L‐Asp(β‐benzyl ester), or Boc‐L‐Gln to give 6‐amino acid substituted (6S)‐3‐acetyl‐4,6,7,12‐tetrahydro‐4‐oxoindolo[2,3‐a]quinolizines 5a , 5b , or 5c , respectively. After the removal of Boc from (6S)‐ 5a (6S)‐3‐acetyl‐6‐glycyl‐4,6,7,12‐tetrahydro‐4‐oxoindolo[2,3‐a]quinolizine ( 6 ) was obtained. The anticancer activities of (6S)‐ 5 and (6S)‐ 6 in vitro were tested.  相似文献   

20.
Aryl addition reactions of ArTi(O‐i‐Pr)3 to aromatic, heteroaromatic, or α,β‐unsaturated ketones are described, producing tertiary alcohols in good to excellent enantioselectivities of up to 97% ee. The structure of the dititanium complex [(i‐PrO)2Ti{μ‐(S)‐BINOLate}(μ‐O‐i‐Pr)TiPh(O‐i‐Pr)2] [(S)‐ 4 ] that simultaneously bears a chiral directing ligand and a nucleophile is reported. Complex (S)‐ 4 possesses a pocket structure and has been illustrated as the key active species for addition reactions of both aldehydes and ketones. Mechanistic and stereochemical insights concerning addition reactions of organometallic reagents to organic carbonyls are rationalized based on the pocket structure and pocket size of (S)‐ 4 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号