首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alumina supported RuMo sulphide catalysts having different weights of metal content and atomic composition ratios R=Ru/(Ru+Mo) were prepared by using ammonium heptamolybdate dissolved in water or a 10% (NH4)2S-H2O solution and RuCl3.3H2O as precursor compounds. Their activities were studied in the hydrodesulphurization (HDS) of thiophene and in the hydrogenation (HYD) of biphenyl, and optimized in terms of the preparation method and the sulphidation process. Some hydrodenitrogenation (HDN) tests were also performed on these catalysts. Electron microscopy and XPS measurements were performed, and the nature of the active phase was discussed.  相似文献   

2.
The ethanol steam-reforming reaction was studied over ZnO-supported cobalt catalysts (10 wt.% Co). Catalysts were prepared by impregnation of nitrate and carbonyl cobalt precursors. Characterization was accomplished by transmission electron microscopy (TEM), Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), and in situ techniques: magnetic measurements, and diffuse reflectance infrared spectroscopy (DRIFT) coupled to mass spectrometry. The use of Co2(CO)8 as precursor produced a catalyst that was highly stable and selective for the production of CO-free hydrogen at reaction temperature as low as 623 K. The only by-product was methane and selectivity of 73% to H2 and 25% to CO2 was obtained. Under reaction conditions, the catalyst showed 92% of reduced cobalt, mainly as small particles.  相似文献   

3.
Double oxides of Rh and Ni have been prepared by chemical mixing methods. Silica-supported and unsupported RhNbO4 and NiNb2O6 catalysts exhibited strong metal-oxide interaction behaviors in ethane hydrogenolysis activities after the decomposition of the double oxides by H2 reduction at 500°C. Silica-supported and zeolite-supported RhVO4 catalysts showed high activity and selectivity for dehydrogenation of cyclohexane after the decomposition in H2. The double-oxide catalyst systems can be used as starting materials to obtain high-performance metal catalysts (redispersion of metals by H2 reduction and regeneration of catalysts by calcination at a high temperature).  相似文献   

4.
A detailed study on the influence of the addition of molybdenum ions on the catalytic behaviour of a selective vanadium–magnesium mixed oxide catalyst in the oxidation of n-butane has been performed. The catalysts have been prepared by impregnation of a calcined V–Mg–O mixed oxides (23.8 wt% of V2O5) with an aqueous solution of ammonium heptamolybdate, and then calcined, and further characterised by several physico-chemical techniques, i.e. SBET, XRD, FTIR, FT-Raman, XPS, H2-TPR. MgMoO4, in addition to Mg3V2O8 and MgO, have been detected in all the Mo-doped samples. The incorporation of molybdenum modifies not only the number of V5+-species on the catalyst surface and the reducibility of selective sites but also the catalytic performance of V–Mg–O catalysts. The incorporation of MoO3 favours a selectivity and a yield to oxydehydrogenation products (especially butadiene) higher than undoped sample. In this way, the best catalyst was obtained with a Mo-loading of 17.3 wt% of MoO3 and a bulk Mo/V atomic ratio of 0.6. From the comparison between the catalytic properties and the catalyst characterisation of undoped and Mo-doped V–Mg–O catalysts, the nature of selective sites in the oxidative dehydrogenation of n-butane is also discussed.  相似文献   

5.
The catalytic performance of some metal oxides in the selective oxidation of H2S in the stream containing water vapor and ammonia was investigated in this study. Among the catalysts tested, V2O5/SiO2 and Fe2O3/SiO2 catalyst showed good conversion of H2S with very low selectivity to undesired SO2. Hydrogen sulfide could be recovered as harmless solid products (elemental sulfur and various ammonium salts), and distribution of solid products was varied with types of catalyst and compositions of reactant. XRD and FT-IR analysis revealed that the salt was mixture of ammonium–sulfur–oxygen compounds. It was noteworthy that V2O5/SiO2 catalyst produced elemental sulfur and ammonium thiosulfate, and that elemental sulfur was principal product on Fe2O3/SiO2 catalyst. Small amount of ammonium sulfate was obtained with the Fe2O3/SiO2 catalyst. In order to elucidate the reaction path, the effects of O2/H2S ratio and concentration of NH3 and H2O are also studied with the V2O5/SiO2 catalyst.  相似文献   

6.
以不同孔道结构Al_2O_3作载体,甲醇、乙醇和柠檬酸作分散剂,通过等体积浸渍法制备系列Co/Al_2O_3费托合成催化剂。采用XRD、TG-DSC和H2-TPR等考察制备方法对催化剂结构的影响,并在固定床反应器中对催化剂进行性能评价。结果表明,采用具有适宜孔道结构Al_2O_3作载体才能获得综合性能较好的催化剂,3种分散剂的加入,促进了钴物种在载体上的分散,增强了钴与载体间的相互作用,改善了催化剂费托合成反应活性,显著提高了重质烃时空收率。  相似文献   

7.
Hydrogenating catalysts were prepared by inserting Ru into the pores of mesoporous Al-MCM-41 materials by selective adsorption of [Ru(NH3)6]3+. Ru/support catalysts were obtained after reduction with H2. The activities of these catalysts in hydrogenation reactions were compared to those of Ru/HY and Ru/SiO2. The catalytic properties in the absence of sulfur were tested in benzene hydrogenation, and the intrinsic activities of all the catalysts (either supported on mesoporous materials or on zeolites) were identical. It was concluded from this result that the dispersion of the Ru metallic phase was similar for all these catalysts. These samples were tested in the tetralin hydrogenation in pure H2 and in the presence of H2S (330 ppm of H2S in H2). They were found to be much less active than the zeolite-supported catalysts in the presence of H2S. It is proposed that the lower activity of the catalysts supported on mesoporous materials is either due to their milder acidity, as evidenced by NH3-TPD, cumene cracking and pyridine desorption experiments, or to the localization of the Ru nanoparticles on alumina islands.  相似文献   

8.
采用浸渍-化学还原法制备了硼化钴/二氧化硅(CoB/SiO2)催化剂,并考察了其催化硼氢化钠水解制氢的性能。研究了二氧化硅粒径、硝酸钴与二氧化硅物质的量比、硝酸钴与硼氢化钠物质的量比等条件对催化剂性能的影响,进而考察了催化剂用量、搅拌转速、反应温度等条件对硼氢化钠水解制氢性能的影响。结果表明,在二氧化硅粒径为15 nm、硝酸钴与二氧化硅物质的量比为0.08∶1、硝酸钴与硼氢化钠物质的量比为1∶5条件下,制备的催化剂催化硼氢化钠水解产氢的速率为45.6 mL/(min·g);因为催化剂粒径很小,伴随硼氢化钠水解产氢产生的动量可以完全消除外扩散速率的影响,搅拌转速对硼氢化钠水解速率的影响很小,硼氢化钠的水解速率随着催化剂用量的增加而增大;随着温度的升高,硼氢化钠的水解速率增大,硼氢化钠水解反应的表观活化能为48.54 kJ/mol,硼氢化钠反应级数为零;催化剂具有良好的重复使用性能和稳定性。  相似文献   

9.
The extent of Rh–niobia interaction in niobia-supported Rh (Rh/Nb2O5), niobia-promoted Rh/SiO2 (Nb2O5–Rh/SiO2) and RhNbO4/SiO2 catalyst after H2 reduction has been investigated by H2 and CO chemisorption measurements. These catalysts have been applied to selective CO oxidation in H2 (CO+H2+O2) and CO hydrogenation (CO+H2), and the results are compared with those of unpromoted Rh/SiO2 catalysts. It has been found that niobia (NbOx) increases the activity and selectivity for both the reactions.  相似文献   

10.
石斌  成文文  李志祥 《化工进展》2015,34(10):3671-3675
通过等体积浸渍法分别将Ni(NO3)2、NiCl2、NiSO4 3种镍前体浸渍于A12O3或SiO2载体上,然后通过H2高温还原法制备了负载型镍基催化剂,考察了镍前体、载体种类、镍负载量、反应条件等对镍基催化剂苯酚加氢性能的影响。结果表明,对比3种镍前体,在H2高温还原体系中Ni(NO3)2最容易被还原,制备的镍基催化剂苯酚加氢活性最高。SiO2负载的镍基催化剂活性远高于γ-Al2O3催化剂。适宜的Ni负载量有助于活性组分的分散和催化活性的提高。镍基催化剂的苯酚加氢产物以环己醇为主,相对缓和的反应条件更容易生成环己酮。在非极性溶剂正庚烷或环己烷存在下,苯酚加氢反应速率远远高于极性溶剂水或乙醇存在下的结果,而且环己酮的选择性更高。  相似文献   

11.
The nature of the silver phases of Ag/Al2O3 catalysts (prepared by silver nitrate impregnation followed by calcination) was investigated by X-ray diffractograms (XRD), transmission electron microscopy (TEM) and UV–VIS analyses and related to the activity of the corresponding materials for the oxidation of NO to NO2. The UV–VIS spectrum of the 1.2 wt.% Ag/Al2O3 exhibited essentially one band associated with Ag+ species and the NO2 yields measured over this material were negligible. A 10 wt.% Ag/Al2O3 material showed the presence of oxidic species of silver (as isolated Ag+ cations and silver aluminate), but the UV–VIS data also revealed the presence of some metallic silver. The activity for the NO oxidation to NO2 of this sample was moderate. The same 10% sample either reduced in H2 or used for the C3H6-selective catalytic reduction (SCR) of NO showed a significantly larger proportion of silver metallic phases and these samples displayed a high activity for the formation of NO2. These data show that the structure and nature of the silver phases of Ag/Al2O3 catalysts can markedly change under reaction feed containing only a fraction of reducing agent (i.e. 500 ppm of propene) in net oxidizing conditions (2.5% O2). The low activity for N2 formation during the C3H6-SCR of NO (reported in an earlier study) over the high loading sample can, therefore, be related to the presence of metallic silver, which is yet a good catalyst for NO oxidation to NO2. The reverse observations apply for the oxide species observed over the low loading sample, which is a good SCR catalyst but do not oxidize NO to NO2.  相似文献   

12.
A new preparation method for supported MoO3 catalyst, slurry impregnation, has been described and compared with the conventional impregnation method. Slurry MoO3/water is used instead of the solution ammonium heptamolybdate, AHM [(NH4)6Mo7O24]. The MoO3/γ-alumina, MoO3/active carbon, and MoO3/silica catalysts with different Mo loadings were prepared by slurry and by conventional method. The low solubility of MoO3 was sufficient to transport molybdenum species from solid MoO3 to the adsorbed phase. The equilibrium was achieved after several hours at 95 °C based on the loading amount of molybdenum. Only the process of drying was needed; calcination was not necessary and was left out. This is an important advantage for active carbon support because oxidative degradation of active carbon impregnated by molybdena starts at a relatively low temperature of about 250 °C during calcination on air. The activity was tested in the transesterification of dimethyl oxalate (DMO) and phenol at 180 °C. The dependences of catalytic activity on Mo loadings for the slurry prepared catalysts were similar to the dependences for the samples prepared by the conventional impregnation method with AHM. The activities of the slurry impregnation MoO3/γ-Al2O3 catalysts were almost the same as those of catalysts prepared conventionally. Although the performances of slurry impregnation MoO3/SiO2 catalysts for transesterification of DMO were slightly better than those of the corresponding catalysts prepared by conventional impregnation, no waste solution and no calcining nitrogenous gases were produced. Therefore, we conclude that the new slurry impregnation method for preparation of supported molybdenum catalysts is an environmentally friendly process and a simple, clean alternative to the conventional preparation using solutions of (NH4)6Mo7O24. The present work will lead to a remarkable improvement in the catalyst preparation for the transesterification reaction.  相似文献   

13.
Mechanochemical synthesis has been applied for many novel material preparations and gained more and more attention due to green and high-efficiency recently. In order to explore the influences of iron precursors on structure and performance of iron molybdate catalyst prepared by mechanochemical route, three typical and cheap iron precursors have been used in preparation of iron molybdate catalyst. Many characterization methods have been employed to obtain the physical and chemical properties of iron molybdate catalyst. Results indicate that iron precursors have the significant impact on the phase composition, crystal morphology and catalytic performance in the conversion of methanol to formaldehyde. It is hard to regulate the phase composition by changing Mo/Fe mole ratios for Fe_2(SO_4)_3 as iron precursor. In addition, as for Fe_2(SO_4)_3, the formaldehyde yield is lower than that from iron molybdate catalyst prepared with Fe(NO_3)_3·9H_2O due to the reduction in Fe_2(MoO_4)_3 phase as active phase. Based on mechanochemical and coprecipitation method, the solvent water could be a key factor for the formation of MoO_3 and Fe_2(MoO_4) for FeCl_3·6H_2O and Fe_2(SO_4)_3 as precursors. Iron molybdate catalyst prepared with Fe(NO_3)_3·9H_2O by mechanochemical route, shows the best methanol conversion and formaldehyde yield in this reaction.  相似文献   

14.
The catalytic performance of cobalt catalysts supported on γ-Al2O3, TiO2, ZrO2 were studied for bio-ethanol steam reforming (BESR) reaction. The supported catalysts (10 wt%Co) were prepared by impregnation and characterized through Thermogravimetric analysis (TGA), H2 chemisorption, laser Raman Spectroscopy, Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), and temperature-programmed reaction (TPRxn). The metallic cobalt sites were found to correlate with the BESR reaction activity. The reaction and H2 chemisorption showed that ZrO2 supported catalyst showed the best dispersion and best catalytic activity. Over the 10% Co/ZrO2 catalyst, using a H2O:EtOH:inert molar ratio of 10:1:75 and a GHSV = 5000 h−1, 100% ethanol conversion and a yield of 5.5 mol H2/mol EtOH were obtained at 550 °C and atmospheric pressure.  相似文献   

15.
The selective oxidation of cyclopentene by aqueous H_2O_2 using H_3PW_(12)O_(40) and tetrabutyl ammonium bromide(TBAB) as a phase transfer catalyst has been investigated. The results show that the presence of TBAB significantly improved the oxidation selectivity of cyclopentene. The effects of the reaction conditions on the conversion of cyclopentene were investigated in detail. The optimal reaction conditions are as follows: the H_3PW_(12)O_(40) to TBAB molar ratio, 1:1–1:3; H_3PW_(12)O_(40) to cyclopentene molar ratio,0.54:100–0.64:100; and molar ratio of H_2O_2 to cyclopentene, 1.6:1. The conversion reached to 59.8% in 4h at 35.0 °C, while the selectivity of glutaraldehyde was 38.0% and the selectivity of 1,2-cyclopentanediol was 55.6%. In addition, a route for oxidation of cyclopentene by aqueous H_2O_2 using a heteropoly acid and quaternary ammonium salt as a phase transfer catalyst was proposed.  相似文献   

16.
Differently stabilised metal sols have been used as precursors in the preparation of heterogeneous gold catalysts for liquid phase oxidation in water solution. The methodology of sols generation appears to be fundamental to obtaining nanoparticles; the support, instead, plays an important role in maintaining particle dimension and morphology.

Three different materials (γ-Al2O3, SiO2 and activated carbon) have been used as the supporting agents for different gold sols that were obtained by reducing HAuCl4 with NaBH4 in the presence of polyvinylalcohol (PVA) or polyvinylpirrolidone (PVP) and with the tetrakis(hydroxymethyl)phosphonium chloride (THPC)/NaOH system. During the immobilisation step, the maintenance of the particle dimension observed in solution depends on both the support and the type of sol. The gold particle mean size of the colloidal suspension is more easily maintained on oxidic supports than on carbon, the latter apparently needing both steric and polar stabilisation of the gold particle.

Comparison of Au/γ-Al2O3 and Au/C catalyst activity in the liquid phase oxidation of ethylene glycol to glycolate highlighted the peculiarity of gold on carbon catalysts; in fact, the normally observed trend of reactivity is partially reversed, medium sized gold particle being the most active.  相似文献   


17.
The activity and selectivity of rhenium promoted cobalt Fischer–Tropsch catalysts supported on Al2O3, TiO2 and SiO2 have been studied in a fixed-bed reactor at 483 K and 20 bar. Exposure of the catalysts to water added to the feed deactivates the Al2O3 supported catalyst, while the activity of the TiO2 and SiO2 supported catalysts increased. However, at high concentrations of water both the SiO2 and TiO2 supported catalyst deactivated. Common for all catalysts was an increase in C5+ selectivity and a decrease in the CH4 selectivity by increasing the water partial pressure. The catalysts have been characterized by scanning transmission electron microscope (STEM), BET, H2 chemisorption and X-ray diffraction (XRD).  相似文献   

18.
Cobalt sulphide catalyst prepared via a new method involving the precipitation reaction between cobaltous acetate and ammonium sulphide solutions has been shown to be favourably active for the catalytic decomposition of H2S when compared with data for other transition metal sulphides.

The BET surface area of this unsupported catalyst is about an order of magnitude higher than cobalt sulphide formed by direct sulphidation of cobalt oxide with H2S gas. XRD, SEM and TEM analyses were used to obtain bulk composition and morphological characteristics. Catalyst specimen calcined at 823 K showed the best activity.

The kinetics of the decomposition reaction has been studied over this new preparation. Experiments conducted at atmospheric pressure between 933-983 K using about 11 feed compositions showed that below 40% H2S/Ar the reaction was essentially 1st order with respect to H2S partial pressure. Beyond this point, rate remained invariant with feed composition. A mechanism involving catalysis via co-ordinative unsaturation sites on the CoS was proposed and kinetic model based on the cleavage of the surface H-S bond as the rate-determining step appeared to be the most adequate representation of the rate data. Hydrogen production rates at all temperatures also paralleled the behaviour seen for H2S decomposition. Activation energy for H2S decomposition and H2 production rates were estimated as 111 kJ mol-1 and 88 kJ mol-1 respectively  相似文献   

19.
Six representative Al2O3 supports with different specific surface areas and pore volumes were used to prepare NiO/Al2O3 catalysts with two NiO loadings. Oxidative dehydrogenation of ethane (ODE) to ethylene was investigated over these catalysts. The yield of ethylene was found to be approximately proportional to the pore volume/surface area ratio of the support used for that catalyst. X-ray diffraction analysis (XRD), TEM and H2-TPR were employed to characterize their structure differences. It was found that the physical properties of the Al2O3 supports were crucial to the dispersion of NiO. More large crystal NiO was found on the Al2O3 supports with lower pore volume, while more highly dispersed NiO was formed on the Al2O3 supports with higher pore volume. An interpretation based on the pore volume of the supports and the physical properties of salt precursors was proposed.  相似文献   

20.
The conversion of CO/H2, CO2/H2 and (CO+CO2)/H2 mixtures using cobalt catalysts under typical Fischer–Tropsch synthesis conditions has been carried out. The results show that in the presence of CO, CO2 hydrogenation is slow. For the cases of only CO or only CO2 hydrogenation, similar catalytic activities were obtained but the selectivities were very different. For CO hydrogenation, normal Fischer–Tropsch synthesis product distributions were observed with an of about 0.80; in contrast, the CO2 hydrogenation products contained about 70% or more of methane. Thus, CO2 and CO hydrogenation appears to follow different reaction pathways. The catalyst deactivates more rapidly for the conversion of CO than for CO2 even though the H2O/H2 ratio is at least two times larger for the conversion of CO2. Since the catalyst ages more slowly in the presence of the higher H2O/H2 conditions, it is concluded that water alone does not account for the deactivation and that there is a deactivation pathway that involves the assistance of CO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号