首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DESIGN: Envelope protein-specific antiviral peptides, called mucibodies, that can specifically recognize and bind to the surface unit protein gp120 of HIV-1 were designed. The initial mucibody binding target was the V3 loop of HIV-1 gp120. Here, the gp120-CD4 binding domain was chosen as the site of mucibody binding. The CD4 binding domain of gp120 is known to be a conformational epitope and is involved in the earliest events of viral entry into many cells. METHODS: The design of the mucibody antivirals was based on previous observations that antibody complementarity determining regions (CDR) are generally similar to the repeating loops or knob structures found in the 20-residue tandem repeat domain of human mucin MUC1. The heavy chain CDR3 from the bacteriophage display antibody b12 was used to construct two mucibodies, b12-CDR1 and b12-26. RESULTS: Peptides corresponding to three tandem repeats were shown to bind directly to the CD4 binding domain of HIV-1 gp120 in a solid-phase enzyme-linked immunosorbent assay. These mucibody peptides also disrupted the gp120-CD4 interaction in a solution-phase inhibition assay. Finally, mucibodies neutralized primary and laboratory macrophage-tropic isolates of HIV-1. CONCLUSIONS: There is a potential for medical use of these peptides as topical vaginal microbicides in preventing HIV-1 transmission during sexual contact. These results also suggest that multivalent, non-immunogenic binding proteins of virtually any specificity could be constructed for use in therapeutic applications involving infectious diseases and immune system dysfunction.  相似文献   

2.
Chimeric T cell receptors (cTCR) with an antibody specificity have been proposed in several models as a combination of antibody and cellular immunotherapy without MHC restriction. Such a tool could be of a limited use in HIV infection because of the great variability of the virus. The human single-chain antibody (ScFv-b12) derives from the b12 antibody directed to the CD4 binding site of gp120, a potent neutralizer of different HIV-1 strains, including a large panel of primary isolates. A single-chain fragment variable (ScFv) bearing the VH Pro-->Glu mutation that improves b12 affinity 54-fold, called ScFv-b12E, was also constructed. The ScFv were linked to the signal-transducing y chain of the Fc(gamma)RIII, with or without spacer region, and expressed in the murine MD45 T cell line. The different cTCR formats behave similarly in terms of ScFv surface expression, but differ according to their activation threshold. T cell transfectants can be stimulated with immobilized gp120 derived from all HIV strains tested. BHK cells infected with Semliki forest virus (SFV) carrying an HIV-1 envelope gene (SFV-env) derived from either HIV-1 laboratory strains (LAI, MN12, HXB2) or field isolates (BX08, CHAR or 133) were used as targets for the transfectants. All gp120-expressing cells induced cTCR-specific activation. The latter result is contrasting with the lack of specific recognition of SFV-CHAR- or 133-infected cells by the native b12 antibody, as measured by cytofluorometric analysis. Finally, HeLa cells (which constitutively express the coreceptor CXCR4) are able to bind HIV-1 gp160 when transfected with the chimeric receptor ScFv-b12-gamma, but, importantly, do not become infected by the virus. Our results therefore suggest that cTCR with b12 specificity can confer to T cells broad anti-HIV reactivity without making them susceptible to HIV infection.  相似文献   

3.
Two monoclonal antibodies (MAbs), 42F and 43F, were isolated some 14 months apart from a single long-term survivor of human immunodeficiency virus type 1 (HIV-1) infection. These MAbs were found to be indistinguishable in terms of their isotypes, specificities, affinities, and biological activities. Both 42F and 43F directed substantial antibody-dependent cellular cytotoxicity (ADCC) against cells infected with four divergent lab-adapted strains of HIV-1, but no neutralizing activity against these strains was detectable. The ability of MAbs 42F and 43F, as well as that of MAbs against two other gp120 epitopes, to direct ADCC against uninfected CD4+ cells to which recombinant gp120SF2 had been adsorbed (i.e., "innocent bystanders") was demonstrated to be less efficient by at least an order of magnitude than their ability to direct ADCC against HIV-1-infected cells. Flow cytometry analyses showed that 42F and 43F also bind to native primary isolate Envs from clades B and E expressed on cell surfaces. By direct binding and competition assays, it was demonstrated that the 42F/43F epitope lies in a domain of gp120 outside the previously described CD4-binding site and V3 loop ADCC epitope clusters. Immunoblot analysis revealed that the 42F/43F epitope is not dependent on disulfide bonds or N-linked glycans in gp120. Epitope mapping of 42F and 43F by binding to linear peptides demonstrated specificity of these MAbs for a sequence of 10 amino acids in the C5 domain comprising residues 491 to 500 (Los Alamos National Laboratory numbering for the HXB2 strain). Thus, 42F and 43F define a new ADCC epitope in gp120. Because of the relative conservation of this epitope and the fact that it appears to have been significantly immunogenic in the individual from which these MAbs were derived, it may prove to be a useful component of HIV vaccines. Furthermore, these MAbs may be used as tools to probe the potential importance of ADCC as an antiviral activity in HIV-1 infection.  相似文献   

4.
The binding of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein, gp120, to its cell surface receptor, CD4, represents a molecular interaction involving distinct alterations in protein structure. Consequently, the pattern of epitopes presented on the gp120-CD4 complex should differ from those on free gp120. To investigate this concept, mice were immunized with covalently crosslinked complexes of viral HIV-1IIIBgp120 and soluble CD4. Two monoclonal antibodies (MoAbs) obtained from the immunized mice exhibited a novel epitope specificity. The MoAbs were marginally reactive with HIV-1IIIBgp120, highly reactive with gp120-CD4 complexes, and unreactive with soluble CD4. The same pattern of reactivity was seen in solid-phase assays using HIV-1(451)gp120. A similar specificity for complexes was evident in flow cytometry experiments, in which MoAb reactivity was dependent upon the attachment of gp120 to CD4-positive cells. In addition, MoAb reactivity was detected upon the interaction of CD4 receptors with purified HIV-1IIIB virions. Notably, seroantibodies from HIV-positive individuals competed for MoAb binding, indicating that the epitope is immunogenic in humans. The results demonstrated that crosslinked gp120-CD4 complexes elicit antibodies to cryptic gp120 epitopes that are exposed during infection in response to receptor binding. These findings may have important implications for the consideration of HIV envelope-receptor complexes as targets for virus neutralization.  相似文献   

5.
The interaction of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 with CD4 CDR3-related peptide derivatives showing anti-HIV-1 activity has been studied. Conformational changes in gp120, which could affect its interaction with CD4 and its shedding from virions, were detected by fluorescence spectrum analysis of tryptophan residues after addition of peptide representative of the CD4 CDR3-related region, but not the CD4 CDR2-related region. Interestingly, the addition of scrambled peptide, S1 (with altered amino acid sequence compared with the native CDR3-related peptide but unaltered overall composition), which we recently showed to have stronger anti-HIV-1 activity than the original CDR3-related peptide, had no effects on the conformational change in gp120 or on its interaction with CD4 and its shedding from HIV-1 virions. However, all of the CDR3-related peptides, including S1, showed blocking effects on the binding of antibodies against gp120 V3 loop and C-terminus regions. Thus, we concluded that there were at least two separable activities of the CDR3-related peptides in anti-HIV-1 activity, i.e. induction of conformational changes in gp120, which could affect its binding to CD4 and to gp41 (as observed in native CDR3-related peptides), and inactivation of V3 loop and C-terminus regions in gp120 (as observed in all of the CDR3-related peptides, including S1).  相似文献   

6.
Monoclonal antibodies that bound to HIV gp41 and cross-reacted with astrocytes were recovered from the blood of three patients infected with HIV-1. Mapping of the specificity of these monoclonal antibodies, using synthetic gp41 peptides, located their epitope to amino acids 644-663 and established their conformation dependence. Six other human monoclonal anti-HIV antibodies were found to bind to HIV gp41 or gp120 but not to reactive astrocytes in brain tissue. Sharing of linear or conformational protein determinants between disparate viral and host proteins is termed molecular mimicry. The consequences of such mimicry by anti-viral antibodies interacting with astrocytes may play a role in the dementia of AIDS patients since a major function of astrocytes is to maintain the appropriate milieu for neuronal function. The finding of such cross-reactive antibodies adds to the evidence for a possible autoimmune pathogenesis in some of the disease manifestations accompanying HIV infection.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.  相似文献   

8.
The association between antibody reactivity to the neutralizing epitope ELDKWA in the transmembrane glycoprotein gp41 and disease progression was investigated in 29 children perinatally infected with HIV-1. Levels of antibody reactivity to this epitope, measured over time, were associated with absolute CD4+ lymphocyte numbers and disease status, and inversely associated with the levels of acid-dissociated p24 antigen in the plasma. Early virus isolates from 10 of 12 children with no detectable antibody reactivity to this epitope were sequenced. Only three contained sequences that differed from the consensus, indicating that this epitope is well conserved in this population. None of these three children developed antibodies to the autologous sequences, indicating that at least 80% of children with negative antibody reactivity to this epitope were true nonresponders. Together, these results indicate that the ELDKWA determinant could be an important component in the formulation of a vaccine or for immunotherapeutic approaches to HIV-1 infection.  相似文献   

9.
Using the process of "antibody antigenization," we engineered two antibody molecules carrying in the third complementarity-determining region of the heavy chain variable domain a 7-mer or a 15-mer peptide epitope of the first extracellular domain (D1) of human CD4 receptor--namely, Ser-Phe-Leu-Thr-Lys-Gly-Pro-Ser (SFLTKGPS; positions 42 through 49) and Gly-Ser-Phe-Leu-Thr-Lys-Gly-Pro-Ser-Lys-Leu-Asn-Asp-Arg-Ala (GSFLTKGPSKLNDRA; positions 41 through 55). These amino acid sequences are contained in the consensus binding site for the human immunodeficiency virus (HIV) on CD4 receptor. Both antigenized antibodies (AgAbs) bound recombinant gp120 and were recognized by a prototype monoclonal antibody to CD4 whose binding site is within amino acid residues 41-55. AgAbs were then used as immunogens in rabbits and mice to elicit a humoral response against CD4. Only the AgAb carrying the sequence 41GSFLTKGPSKLN-DRA55 induced a response against CD4. The induced antibodies showed specificity for the amino acid sequence of CD4 engineered in the AgAb molecule, were able to inhibit the formation of syncytia between human CD4+ T cells MOLT-3 and 8E5 (T cells that are constitutively infected with HIV), and stained human CD4+ CEM T cells. Four murine monoclonal antibodies were used to analyze the relationship between syncytia inhibition and CD4 binding at the single antibody level, and indicated that recognition of native CD4 is not an absolute requirement for inhibition of syncytia. This study demonstrates that antigenized antibodies can be used as immunogens to elicit site-specific and biologically active immunity to CD4. The importance of this approach as a general way to induce anti-receptor immunity and as a possible new measure to immunointervention in HIV infection is discussed.  相似文献   

10.
To examine antibody-mediated neutralization of HIV-1 primary isolates in vitro, we tested sera and plasma from infected individuals against four clade B primary isolates. These isolates were analyzed further for neutralization by a panel of several human anti-HIV-1 mAb in order to identify the neutralizing epitopes of these viruses. Each of the HIV-1+ serum and plasma specimens tested had neutralizing activities against one or more of the four primary isolates. Of the three individual sera, one (FDA-2) neutralized all of the four isolates, while the other two sera were effective against only one virus. The pooled plasma and serum samples reacted broadly with these isolates. Based on the neutralizing activities of the mAb panel, each virus isolate exhibited a distinct pattern of reactivity, suggesting antigenic diversity among clade B viruses. Neutralizing epitopes were found in the V3 loop and CD4-binding domain of gp120, as well as near the transmembrane region (cluster II epitope) of gp41. A mAb directed to the cluster I epitope of gp41 near the immunodominant disulfide loop weakly neutralized one primary isolate. None of the mAb in the panel affected one primary isolate, US4, although this virus was sensitive to neutralization by some of the polyclonal antibody specimens. This isolate was also resistant to neutralization by a cocktail of 10 mAb, most of which individually inhibited at least one of the other three viruses tested. These results suggest that neutralizing activity for this latter virus is present in certain HIV-1+ sera/plasma, but is not exhibited by the mAb in the panel. Thus, effective neutralizing antibodies against primary isolates can be generated by humans upon exposure to HIV-1, but not all of these antigenic specificities are represented in a large panel of human anti-HIV-1 mAb.  相似文献   

11.
CD4 ligation of HIV envelope gp120 results in conformational changes in gp120 that lead to exposure of the gp41 fusogenic domain and fusion with the host cell membrane. One determinant at or near the CD4-binding site exposed on gp120 subsequent to CD4 binding is defined by two human MAbs termed 17b and 48d. These MAbs do not block CD4 binding to gp120; rather, their binding to gp120 is upregulated following CD4 binding. To determine if synthetic peptide mimetopes could be found that reflect conformational determinants on the surface of gp120, synthetic gp120 peptides from 10 divergent HIV isolates were screened for their ability to bind to 17b and 48d in ELISAs. Although MAb 48d binds to HIV IIIB recombinant gp120 protein, in our studies 48d selectively bound only to the HIV Can0A V3 peptide and not to HIV IIIB V3 peptide, whereas MAb 17b bound none of the peptides tested. Monoclonal antibody 48d bound to the HIV Can0A V3 peptide both in solid-phase ELISA and in solution in a competitive ELISA, but could not bind to HIV Can0A V3 peptide bound to human T cells. The HIV Can0A V3 peptide induced anti-HIV antibodies in rhesus monkeys that neutralized the laboratory-adapted HIV MN strain but did not induce antibodies that neutralized HIV IIIB/LAI, HIV SF-2, or HIV RF isolates, or that neutralized HIV primary isolates. These data suggested that the primary sequence of the HIV Can0A V3 loop exists in a conformer that mimicks a non-V3 determinant of native gp120 exposed subsequent to CD4 binding on the surface of gp120 of laboratory-adapted HIV strains. Structural studies of the Can0A V3 peptide and/or the 48d MAb may provide important information regarding the nature of gp120 conformational changes that occur following gp120 ligation by CD4.  相似文献   

12.
We report the development of an immunoassay for the titration of antibody to the CD4-binding site (CD4BS) of the human immunodeficiency virus type 1 (HIV-1) surface glycoprotein gp120. This assay is a competitive enzyme-linked immunosorbent assay in which serum antibodies compete with labeled F105, a human monoclonal antibody whose corresponding epitope overlaps the conformation-dependent CD4BS, for binding to purified recombinant gp120 coated on a solid phase. Ninety-nine percent (109 of 110) of HIV-1-positive French patients and 91% (51 of 56) of HIV-1-positive African patients had CD4BS antibodies, indicating that the conformational CD4BS epitope is well conserved among different subtypes of HIV-1. Titers of CD4BS antibodies according to clinical status appeared to be not statistically different. A longitudinal study in 21 seroconverters showed that, for the majority of individuals, CD4BS antibodies appeared early and persisted at relatively high titers for several years. None of 21 HIV-2-seropositive patients had CD4BS antibodies in our assay, suggesting that the antibodies produced during HIV-2 infection are not cross-reactive with the CD4BS of HIV-1 gp120.  相似文献   

13.
The entry of human immunodeficiency virus (HIV) into cells requires the sequential interaction of the viral exterior envelope glycoprotein, gp120, with the CD4 glycoprotein and a chemokine receptor on the cell surface. These interactions initiate a fusion of the viral and cellular membranes. Although gp120 can elicit virus-neutralizing antibodies, HIV eludes the immune system. We have solved the X-ray crystal structure at 2.5 A resolution of an HIV-1 gp120 core complexed with a two-domain fragment of human CD4 and an antigen-binding fragment of a neutralizing antibody that blocks chemokine-receptor binding. The structure reveals a cavity-laden CD4-gp120 interface, a conserved binding site for the chemokine receptor, evidence for a conformational change upon CD4 binding, the nature of a CD4-induced antibody epitope, and specific mechanisms for immune evasion. Our results provide a framework for understanding the complex biology of HIV entry into cells and should guide efforts to intervene.  相似文献   

14.
The human immunodeficiency virus HIV-1 establishes persistent infections in humans which lead to acquired immunodeficiency syndrome (AIDS). The HIV-1 envelope glycoproteins, gp120 and gp41, are assembled into a trimeric complex that mediates virus entry into target cells. HIV-1 entry depends on the sequential interaction of the gp120 exterior envelope glycoprotein with the receptors on the cell, CD4 and members of the chemokine receptor family. The gp120 glycoprotein, which can be shed from the envelope complex, elicits both virus-neutralizing and non-neutralizing antibodies during natural infection. Antibodies that lack neutralizing activity are often directed against the gp120 regions that are occluded on the assembled trimer and which are exposed only upon shedding. Neutralizing antibodies, by contrast, must access the functional envelope glycoprotein complex and typically recognize conserved or variable epitopes near the receptor-binding regions. Here we describe the spatial organization of conserved neutralization epitopes on gp120, using epitope maps in conjunction with the X-ray crystal structure of a ternary complex that includes a gp120 core, CD4 and a neutralizing antibody. A large fraction of the predicted accessible surface of gp120 in the trimer is composed of variable, heavily glycosylated core and loop structures that surround the receptor-binding regions. Understanding the structural basis for the ability of HIV-1 to evade the humoral immune response should assist in the design of a vaccine.  相似文献   

15.
We investigated the relative importance of binding site occupancy and epitope specificity in antibody neutralization of human immunodeficiency virus (HIV) type 1 (HIV-1). The neutralization of a T-cell-line-adapted HIV-1 isolate (MN) was analyzed with a number of monovalent recombinant Fab fragments (Fabs) and monoclonal antibodies with a range of specificities covering all confirmed gp120-specific neutralization epitopes. Binding of Fabs to recombinant monomeric gp120 was determined by surface plasmon resonance, and binding of Fabs and whole antibodies to functional oligomeric gp120 was determined by indirect immunofluorescence and flow cytometry on HIV-infected cells. An excellent correlation between neutralization and oligomeric gp120 binding was observed, and a lack of correlation with monomeric gp120 binding was confirmed. A similar degree of correlation was observed between oligomeric gp120 binding and neutralization with a T-cell-line-adapted HIV-1 molecular clone (Hx10). The ratios of oligomer binding/neutralization titer fell, in general, within a relatively narrow range for antibodies to different neutralization epitopes. These results suggest that the occupancy of binding sites on HIV-1 virions is the major factor in determining neutralization, irrespective of epitope specificity. Models to account for these observations are proposed.  相似文献   

16.
We characterized human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein epitopes recognized by neutralizing antibodies from monkeys recently infected by molecularly cloned simian-human immunodeficiency virus (SHIV) variants. The early neutralizing antibody response in each infected animal was directed mainly against a single epitope. This primary neutralizing epitope, however, differed among individual monkeys infected by identical viruses. Two such neutralization epitopes were determined by sequences in the V2 and V3 loops of the gp120 envelope glycoprotein, while a third neutralization epitope, apparently discontinuous, was determined by both V2 and V3 sequences. These results indicate that the early neutralizing antibody response in SHIV-infected monkeys is monospecific and directed against epitopes composed of the gp120 V2 and V3 variable loops.  相似文献   

17.
Numerous reports have demonstrated that immunization with plasmids bearing influenza virus hemagglutinin (HA) or nucleoprotein (NP) genes elicits humoral and cellular protective responses. Herein we describe the generation of a plasmid (pVH-TB) encoding for a VH region of a self-Ig in which both the major B cell epitope HA150-159 and the immunodominant CD4 T cell epitope HA110-120 of HA of the A/PR/8/34 influenza virus were genetically inserted in the CDR2 and CDR3 loops, respectively. Our results demonstrate unequivocally that i.m. injection of pVH-TB plasmid in BALB/c mice elicited specific cellular and humoral immune responses able to protect against infection with lethal doses of A/PR/8/34 influenza virus.  相似文献   

18.
Based on our finding that a similar epitope exists between human IFN-beta (aa128-134) and HIV-1 gp41 (aa586-595), we examined 20 sera from healthy and 20 from HIV-1 infected individuals for IFN-beta antibody levels by ELISA. The levels of anti-IFN-beta antibody in sera from HIV-infected individuals were increased by about 160% in comparison with HIV-negative. We affinity-purified anti-gp41 antibodies from sera of HIV-1-infected individuals using rsgp41-sepharose column. One of three antibodies could recognize human IFN-beta in comparison with antibodies from serum of a healthy individual. A mouse antiserum to human IFN-beta recognized rsgp41 (recombinant soluble gp41 Env amino acid 539-684), while the normal mouse serum (pre-immune serum) did not bind to rspg41. These results indicate that a common immunological epitope exists between human IFN-beta and HIV-1 gp41. The sequence-similarity suggests that this common immunological epitope may be located in the region aa128-134 of human IFN-beta and the immunosuppressive domain (aa583-599) of HIV-1 gp41. The increased levels of antibodies against interferon-beta in HIV-1 positive individuals may be explained by a common immunological epitope on human IFN-beta and HIV-1 gp41.  相似文献   

19.
The fine specificity of the anti-V3 antibody responses induced in chimpanzees immunized by various human immunodeficiency type 1 (HIV-1) candidate vaccines and challenged by heterologous strains of HIV-1 was analyzed by enzyme-linked immunosorbent assay (ELISA) and Pepscan epitope mapping. Two chimpanzees immunized with the recombinant canarypox virus ALVAC-HIV (vCP125) expressing gp160MN and boosted with purified gp160MN/LAI alone, then with both immunogens in combination, were not protected against challenge with HIV-1 SF2. Their sera mainly recognized one epitope of the V3 loop, located in the NH2-terminal half. By contrast, immunization of two other chimpanzees with purified gp160MN/LAI and boosting with a synthetic V3MN peptide elicited a strong anti-V3 antibody response with a broader specificity directed against multiple epitopes all along the V3 loop. These chimpanzees were protected against infection by HIV-1 SF2. However, when these two chimpanzees were challenged later with a HIV-1 clade E strain virus, they became infected. We failed to detect any reactivity with the peptide of the ectodomain of gp41 of sera harvested after immunization with the various immunogens or after challenge with HIV-1 SF2 or HIV-1 90CR402. These results demonstrated that anti-V3 antibodies with a restricted fine specificity were induced in chimpanzees immunized with gp160 purified or expressed by recombinant canarypox confirming our previous results obtained in three different species (human, guinea pig and, macaque). In contrast, a boost with the V3 peptide broadened antibody responses, suggesting that the mode of presentation of the V3 loop to the immune system strongly influences the epitope specificity of the resulting antibody response.  相似文献   

20.
To evaluate conserved structures of the surface gp120 subunit (SU) of the human immunodeficiency virus type 1 (HIV-1) envelope in gp120-cell interactions, we designed and produced an HIV-1 IIIB (HXB2R) gp120 carrying a deletion of amino acids E61 to S85. This sequence corresponds to a highly conserved predicted amphipathic alpha-helical structure located in the gp120 C1 region. The resultant soluble mutant with a deleted alpha helix 1 (gp120 DeltaalphaHX1) exhibited a strong interaction with CXCR4, although CD4 binding was undetectable. The former interaction was specific since it inhibited the binding of the anti-CXCR4 monoclonal antibody (12G5), as well as SDF1alpha, the natural ligand of CXCR4. Additionally, the mutant gp120 was able to bind to CXCR4(+)/CD4(-) cells but not to CXCR4(-)/CD4(-) cells. Although efficiently expressed on cell surface, HIV envelope harboring the deleted gp120 DeltaalphaHX1 associated with wild-type transmembrane gp41 was unable to induce cell-to-cell fusion with HeLa CD4(+) cells. Nevertheless, the soluble gp120 DeltaalphaHX1 efficiently inhibited a single round of HIV-1 LAI infection in HeLa P4 cells, with a 50% inhibitory concentration of 100 nM. Our data demonstrate that interaction with the CXCR4 coreceptor was maintained in a SUgp120 HIV envelope lacking alphaHX1. Moreover, in the absence of CD4 binding, the interaction of gp120 DeltaalphaHX1 with CXCR4 was sufficient to inhibit HIV-1 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号