共查询到20条相似文献,搜索用时 15 毫秒
1.
N Aarts M Metz E Holub BJ Staskawicz MJ Daniels JE Parker 《Canadian Metallurgical Quarterly》1998,95(17):10306-10311
The Arabidopsis genes EDS1 and NDR1 were shown previously by mutational analysis to encode essential components of race-specific disease resistance. Here, we examined the relative requirements for EDS1 and NDR1 by a broad spectrum of Resistance (R) genes present in three Arabidopsis accessions (Columbia, Landsberg-erecta, and Wassilewskija). We show that there is a strong requirement for EDS1 by a subset of R loci (RPP2, RPP4, RPP5, RPP21, and RPS4), conferring resistance to the biotrophic oomycete Peronospora parasitica, and to Pseudomonas bacteria expressing the avirulence gene avrRps4. The requirement for NDR1 by these EDS1-dependent R loci is either weak or not measurable. Conversely, three NDR1-dependent R loci, RPS2, RPM1, and RPS5, operate independently of EDS1. Another RPP locus, RPP8, exhibits no strong exclusive requirement for EDS1 or NDR1 in isolate-specific resistance to P. parasitica, although resistance is compromised weakly by eds1. Similarly, resistance conditioned by two EDS1-dependent RPP genes, RPP4 and RPP5, is impaired partially by ndr1, implicating a degree of pathway cross-talk. Our results provide compelling evidence for the preferential utilization of either signaling component by particular R genes and thus define at least two disease resistance pathways. The data also suggest that strong dependence on EDS1 or NDR1 is governed by R protein structural type rather than pathogen class. 相似文献
2.
EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana 总被引:1,自引:0,他引:1
The EIR1 gene of Arabidopsis is a member of a family of plant genes with similarities to bacterial membrane transporters. This gene is expressed only in the root, which is consistent with the phenotypes of the eir1 mutants-the roots are agravitropic and have a reduced sensitivity to ethylene. The roots of eir1 mutants are also insensitive to the excess auxin produced by alf1-1 and fail to induce an auxin-inducible gene in the expansion zone. Although they fail to respond to internally generated auxin, they respond normally to externally applied auxin. Expression of the EIR1 gene in Saccharomyces cerevisiae confers resistance to fluorinated indolic compounds. Taken together, these data suggest that the EIR1 protein has a root-specific role in the transport of auxin. 相似文献
3.
M Winey MA Hoyt C Chan L Goetsch D Botstein B Byers 《Canadian Metallurgical Quarterly》1993,122(4):743-751
The spindle pole body (SPB) of Saccharomyces cerevisiae serves as the centrosome in this organism, undergoing duplication early in the cell cycle to generate the two poles of the mitotic spindle. The conditional lethal mutation ndc1-1 has previously been shown to cause asymmetric segregation, wherein all the chromosomes go to one pole of the mitotic spindle (Thomas, J. H., and D. Botstein. 1986. Cell. 44:65-76). Examination by electron microscopy of mutant cells subjected to the nonpermissive temperature reveals a defect in SPB duplication. Although duplication is seen to occur, the nascent SPB fails to undergo insertion into the nuclear envelope. The parental SPB remains functional, organizing a monopolar spindle to which all the chromosomes are presumably attached. Order-of-function experiments reveal that the NDC1 function is required in G1 after alpha-factor arrest but before the arrest caused by cdc34. Molecular analysis shows that the NDC1 gene is essential and that it encodes a 656 amino acid protein (74 kD) with six or seven putative transmembrane domains. This evidence for membrane association is further supported by immunofluorescent localization of the NDC1 product to the vicinity of the nuclear envelope. These findings suggest that the NDC1 protein acts within the nuclear envelope to mediate insertion of the nascent SPB. 相似文献
4.
The cell death response known as the hypersensitive response (HR) is a central feature of gene-for-gene plant disease resistance. A mutant line of Arabidopsis thaliana was identified in which effective gene-for-gene resistance occurs despite the virtual absence of HR cell death. Plants mutated at the DND1 locus are defective in HR cell death but retain characteristic responses to avirulent Pseudomonas syringae such as induction of pathogenesis-related gene expression and strong restriction of pathogen growth. Mutant dnd1 plants also exhibit enhanced resistance against a broad spectrum of virulent fungal, bacterial, and viral pathogens. The resistance against virulent pathogens in dnd1 plants is quantitatively less strong and is differentiable from the gene-for-gene resistance mediated by resistance genes RPS2 and RPM1. Levels of salicylic acid compounds and mRNAs for pathogenesis-related genes are elevated constitutively in dnd1 plants. This constitutive induction of systemic acquired resistance may substitute for HR cell death in potentiating the stronger gene-for-gene defense response. Although cell death may contribute to defense signal transduction in wild-type plants, the dnd1 mutant demonstrates that strong restriction of pathogen growth can occur in the absence of extensive HR cell death in the gene-for-gene resistance response of Arabidopsis against P. syringae. 相似文献
5.
Carotid artery dissection is a major cause of cerebral infarction in the young. The extracranial portion of the internal carotid artery is much more frequently involved than the intracranial portion. In up to 20% of cases it is bilateral or associated with vertebral artery dissection. It is mainly characterised by local signs such as headache or facial pain, Horner's syndrome, lower cranial nerve palsies and pulsatile tinnitus, followed a few hours or days later by signs of cerebral or retinal ischemia. Ultrasound investigations show signs of distal stenosis or occlusion, highly suggestive of dissection, but the best diagnostic tool is presently the association of magnetic resonance imaging (MRI) and MR angiography which tend to replace intra-arterial angiography. The prognosis is highly variable: excellent in cases limited to local signs, but very poor leading to death or major sequelae in about 15% of cases. Various treatments have been suggested but no controlled trial has ever been performed in this condition. Heparin in the acute stage followed by warfarin or aspirin for 3 to 6 months is most commonly used. 相似文献
6.
DX Xie BF Feys S James M Nieto-Rostro JG Turner 《Canadian Metallurgical Quarterly》1998,280(5366):1091-1094
The coi1 mutation defines an Arabidopsis gene required for response to jasmonates, which regulate defense against insects and pathogens, wound healing, and pollen fertility. The wild-type allele, COI1, was mapped to a 90-kilobase genomic fragment and located by complementation of coi1-1 mutants. The predicted amino acid sequence of the COI1 protein contains 16 leucine-rich repeats and an F-box motif. It has similarity to the F-box proteins Arabidopsis TIR1, human Skp2, and yeast Grr1, which appear to function by targeting repressor proteins for removal by ubiquitination. 相似文献
7.
T Potuschak S Stary P Schl?gelhofer F Becker V Nejinskaia A Bachmair 《Canadian Metallurgical Quarterly》1998,95(14):7904-7908
Mutants in the PRT1 gene of Arabidopsis thaliana are impaired in the degradation of a normally short-lived intracellular protein that contains a destabilizing N-terminal residue. Proteins bearing such residues are the substrates of an ubiquitin-dependent proteolytic system called the N-end rule pathway. The chromosomal position of PRT1 was determined, and the PRT1 gene was isolated by map-based cloning. The 45-kDa PRT1 protein contains two RING finger domains and one ZZ domain. No other proteins in databases match these characteristics of PRT1. There is, however, a weak similarity to Rad18p of Saccharomyces cerevisiae. The RING finger domains have been found in a number of other proteins that are involved in ubiquitin conjugation, consistent with the proposed role of PRT1 in the plant N-end rule pathway. 相似文献
8.
9.
The Cercospora nicotianae SOR1 gene is required for resistance to singlet oxygen-generating photosensitizers. SOR1 was characterized in the wild-type and in five photosensitizer-sensitive mutant strains which are complemented to photosensitizer resistance by transformation with SOR1. Sequence analysis determined that three of the mutants contain SOR1 copies with mutations encoding substitutions in the protein-coding sequence; however, two other mutants had wild-type SOR1 protein and promoter sequences. All five mutants accumulate SOR1 mRNA at levels comparable to that of the wild-type strain. In the wild-type strain, SOR1 accumulation is enhanced two-fold by light, but is unaffected by the presence of cercosporin, the photosensitizer synthesized by C. nicotianae. Southern analysis indicates that SOR1 is present in other fungi that synthesize structurally related perylenequinone photosensitizers. 相似文献
10.
The site-selected insertion (SSI) procedure was used to generate insertional knockout mutations in the gene for tomato polygalacturonase (PG), a critical enzyme in fruit ripening. Previously, it had been shown that the Dissociation (Ds) elements in a select group of tomato plants frequently inserted into PG, at least in somatic tissues. DNA isolated from pollen produced by progeny of these plants was screened by SSI to identify plants likely to transmit the insertions in PG to progeny. These results identified one family as likely candidate for yielding germinally transmitted insertions. Four thousand progeny were screened and five were found containing germinally transmitted Ds insertions in PG, one of which contained two Ds insertions in PG. The Ds elements were stabilized by genetically removing the transposase and four of the five insertions were recovered as homozygous in the next generation. Enzymatic analysis of fruit from these individuals demonstrated that there was at least a 1000-fold reduction in polygalacturonase levels in those plants bearing Ds insertions in PG exons. Individuals with modified PG sequences due to the sequence footprint, resulting from excision of the element, were identified using the single-strand conformational polymorphism (SSCP) method. Enzymatic analysis of fruit from a plant homozygous for one such excision allele showed a significant reduction in polygalacturonase activity. Since there is no transgenic material left in PG, this demonstrates the ability to modify a gene of commercial value in planta and subsequently removing all transgenic material. 相似文献
11.
B Essigmann S Güler RA Narang D Linke C Benning 《Canadian Metallurgical Quarterly》1998,95(4):1950-1955
Photosynthetic membranes of higher plants contain specific nonphosphorous lipids like the sulfolipid sulfoquinovosyl diacylglycerol in addition to the ubiquitous phospholipid phosphatidylglycerol. In bacteria, an environmental factor that drastically affects thylakoid lipid composition appears to be the availability of phosphate. Accordingly, we discovered an increase in the relative amount of sulfolipid and a concomitant decrease in phosphatidylglycerol in Arabidopsis thaliana grown on medium with reduced amounts of phosphate, as well as in the pho1 mutant of A. thaliana deficient in phosphate transport. To investigate the molecular basis of the observed change in lipid composition, we isolated a cDNA of A. thaliana, designated SQD1, that encodes a protein involved in sulfolipid biosynthesis as suggested by three lines of evidence. First, the cDNA shows high sequence similarity to bacterial sqdB genes known to be essential for sulfolipid biosynthesis; second, the SQD1 gene product is imported into chloroplasts where sulfolipid biosynthesis takes place; and third, transgenic plants expressing SQD1 in antisense orientation show a reduction in sulfolipid content. In the pho1 mutant as well as in wild-type plants grown under reduced phosphate availability, increased amounts of SQD1 mRNA and SQD1 protein are detected, suggesting that the increase in sulfolipid content under phosphate limitation is the result of an increased expression of at least one gene required for sulfolipid biosynthesis in A. thaliana. It is suggested that a certain amount of anionic thylakoid lipid is maintained by substituting sulfolipid for phosphatidylglycerol under reduced phosphate availability. 相似文献
12.
13.
This paper reports on six Arabidopsis accessions that show resistance to a wild isolate of the powdery mildew pathogen, Erysiphe cichoracearum. Resistance at 7 days post-inoculation in these accessions was characterized by limited fungal growth and sporadic development of chlorotic or necrotic lesions at inoculation sites. Three accessions, Wa-1, Kas-1 and SI-0, were highly resistant, while the other accessions permitted some fungal growth and conidiation. Papilla formation was a frequent host response; however, cell death appeared to be neither a rapid nor a common response to infection. To determine the genetic basis of resistance, segregation analyses of progeny from crosses between each of the resistant accessions and Columbia (gl1), which is susceptible to the powdery mildew pathogen, were performed. For all accessions except Sl-0, resistance was conferred by a single locus. Sl-0 was unique in that two unlinked loci controlled the disease reaction phenotype. In accessions Wa-1, Kas-1, Stw-0 and Su-0, powdery mildew resistance was encoded by a semi-dominant allele. However, susceptibility was dominant to resistance in accessions Te-0 and Sl-0. Mapping studies revealed that powdery mildew resistances in Kas-1, Wa-1, Te-0, Su-0 and Stw-0 were controlled by five independent loci. This study suggests that the Arabidopsis powdery mildew disease will be a suitable model system in which to investigate powdery mildew diseases. 相似文献
14.
Disease resistance in plants is often controlled by a gene-for-gene mechanism in which avirulence (avr) gene products encoded by pathogens are specifically recognized, either directly or indirectly, by plant disease resistance (R) gene products. Members of the NBS-LRR class of R genes encode proteins containing a putative nucleotide binding site (NBS) and carboxyl-terminal leucine-rich repeats (LRRs). Generally, NBS-LRR proteins do not contain predicted transmembrane segments or signal peptides, suggesting they are soluble cytoplasmic proteins. RPM1 is an NBS-LRR protein from Arabidopsis thaliana that confers resistance to Pseudomonas syringae expressing either avrRpm1 or avrB. RPM1 protein was localized by using an epitope tag. In contrast to previous suggestions, RPM1 is a peripheral membrane protein that likely resides on the cytoplasmic face of the plasma membrane. Furthermore, RPM1 is degraded coincident with the onset of the hypersensitive response, suggesting a negative feedback loop controlling the extent of cell death and overall resistance response at the site of infection. 相似文献
15.
The open reading frame immediately upstream of uspA is demonstrated to encode a 14-kDa protein which we named UspB (universal stress protein B) because of its general responsiveness to different starvation and stress conditions. UspB is predicted to be an integral membrane protein with at least one and perhaps two membrane-spanning domains. Overexpression of UspB causes cell death in stationary phase, whereas mutants of uspB are sensitive to exposure to ethanol but not heat in stationary phase. In contrast to uspA, stationary-phase induction of uspB requires the sigma factor sigmaS. The expression of uspB is modulated by H-NS, consistent with the role of H-NS in altering sigmaS levels. Our results demonstrate that a gene of the RpoS regulon is involved in the development of stationary-phase resistance to ethanol, in addition to the regulon's previously known role in thermotolerance, osmotolerance, and oxidative stress resistance. 相似文献
16.
MA Botella MJ Coleman DE Hughes MT Nishimura JD Jones SC Somerville 《Canadian Metallurgical Quarterly》1997,12(5):1197-1211
Map positions have been determined for 42 non-redundant Arabidopsis expressed sequence tags (ESTs) showing similarity to disease resistance genes (R-ESTs), and for three Pto-like sequences that were amplified with degenerate primers. Employing a PCR-based strategy, yeast artificial chromosome (YAC) clones containing the EST sequences were identified. Since many YACs have been mapped, the locations of the R-ESTs could be inferred from the map positions of the YACs. R-EST clones that exhibited ambiguous map positions were mapped as either cleavable amplifiable polymorphic sequence (CAPS) or restriction fragment length polymorphism (RFLP) markers using F8 (Ler x Col-0) recombinant inbred (RI) lines. In all cases but two, the R-ESTs and Pto-like sequences mapped to single, unique locations. One R-EST and one Pto-like sequence each mapped to two locations. Thus, a total of 47 loci were identified in this study. Several R-ESTs occur in clusters suggesting that they may have arisen via gene duplication events. Interestingly, several R-ESTs map to regions containing genetically defined disease resistance genes. Thus, this collection of mapped R-ESTs may expedite the isolation of disease resistance genes. As the cDNA sequencing projects have identified an estimated 63% of Arabidopsis genes, a very large number of R-ESTs (approximately 95), and by inference disease resistance genes of the leucine-rich repeat-class probably occur in the Arabidopsis genome. 相似文献
17.
18.
Rng2p, a protein required for cytokinesis in fission yeast, is a component of the actomyosin ring and the spindle pole body 总被引:1,自引:0,他引:1
BACKGROUND: An actomyosin-based contractile ring plays a pivotal role in cytokinesis. Despite the identification of many components of the ring, the steps involved in its assembly are unknown. The fission yeast Schizosaccharomyces pombe is an attractive organism in which to study cytokinesis because its cell cycle has been well characterized; it divides by medial fission using an actomyosin ring; and a number of S. pombe mutants defective in actomyosin ring assembly have been isolated. Here, we have characterized one such mutant, rng2. RESULTS: Temperature-sensitive rng2 mutants accumulated F-actin cables in the medial region of the cell but failed to organize the cables into a ring. In rng2-null mutants, only a spot-like structure containing F-actin was detected. The rng2+ gene encodes a protein related to human IQGAP1, a protein that binds actin and calmodulin and is a potential effector for the Rho family of GTPases. Rng2p localized to the actomyosin ring and to the spindle pole body (SPB) of interphase and mitotic cells. Localization of Rng2p to the actomyosin ring but not the SPB required F-actin. Rng2p interacted with calmodulin, a component of the SPB and the actomyosin ring. The rng2 gene showed genetic interactions with three other actomyosin ring assembly mutants, cdc4, cdc12, and rng5. CONCLUSIONS: The S. pombe IQGAP-related protein Rng2p is a component of the actomyosin ring and the SPB and is required for actomyosin ring construction following assembly of F-actin at the division site. 相似文献
19.
The S. cerevisiae SIS1 gene is essential and encodes a heat shock protein with similarity to the bacterial DnaJ protein. At the nonpermissive temperature, temperature-sensitive sis1 strains rapidly accumulate 80S ribosomes and have decreased amounts of polysomes. Certain alterations in 60S ribosomal subunits can suppress the temperature-sensitive phenotype of sis1 strains and prevent the accumulation of 80S ribosomes and the loss of polysomes normally seen under conditions of reduced SIS1 function. Analysis of sucrose gradients for SIS1 protein shows that a large fraction of SIS1 is associated with 40S ribosomal subunits and the smaller polysomes. These and other results indicate that SIS1 is required for the normal initiation of translation. Because DnaJ has been shown to mediate the dissociation of several protein complexes, the requirement of SIS1 in the initiation of translation might be for mediating the dissociation of a specific protein complex of the translation machinery. 相似文献
20.
JM Fernández-Real W Ricart-Engel E Arroyo R Balan?á R Casamitjana-Abella D Cabrero M Fernández-Casta?er J Soler 《Canadian Metallurgical Quarterly》1998,21(1):62-68
Six human cancer cell lines exhibiting a large range of sensitivity to 5-fluorouracil (5-FU) were evaluated for thymidylate synthase (TS) and p53 gene expression, TS and dihydropyrimidine dehydrogenase (DPD) activity, as well as cell cycle parameters, S-phase fraction (SPF), bromodeoxyuridine labelling index (LI) and S-phase duration (SPD). All these parameters were investigated for 7 days in asynchronously growing cell populations and compared with the cell sensitivity to 5-FU. No significant correlation was found between S-phase parameters and TS gene expression and/or activity. TS activity was higher in proliferating cells; however, it was not significantly higher in rapidly growing cell lines with short SPD. Neither TS gene expression nor activity was found to correlate with 5-FU sensitivity. On the another hand, a statistically significant correlation (P < 0.0001) was observed between LI and SPD and 5-FU sensitivity. The present results suggest that cell cycle parameters such as SPD and/or LI could be better parameters for 5-FU sensitivity prediction than TS gene expression and/or activity. This could be especially informative in cases of concomitant radio-chemotherapy as S-phase parameters are already proposed for hyperfractionated radiotherapy planning. 相似文献