首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
表面机械研磨诱导AISI 304不锈钢表层纳米化Ⅰ.组织与性能   总被引:11,自引:0,他引:11  
采用表面机械研磨处理(SMAT)在AISI 304不锈钢上制备出纳米结构表层,研究纳米化行为及其对硬度的影响.结果表明:经过SMAT后,样品表面形成了厚度约为30μm的纳米晶层,显微组织由平均晶粒尺寸约为10 nm的单一马氏体相演变为尺寸稍大的双相组织;在距表面30-300 μm的范围内,显微组织由以亚微米级的奥氏体多系孪晶为主逐渐演变为单系孪晶.表面纳米化是晶粒碎化与纳米尺度新相形成共同作用的结果.与心部相比,表面硬度显著提高.  相似文献   

2.
表面机械研磨诱导AISl 304不锈钢表层纳米化I.组织与性能   总被引:23,自引:2,他引:23  
采用表面机械研磨处理(SMAT)在AISl 304不锈钢上制备出纳米结构表层,研究纳米化行为及其对硬度的影响.结果表明:经过SMAT后,样品表面形成了厚度约为30μm的纳米晶层,显微组织由平均晶粒尺寸约为10nm的单一马氏体相演变为尺寸稍大的双相组织,在距表面30—300μm的范围内,显微组织由以亚微米级的奥氏体多系孪晶为主逐渐演变为单系孪晶.表面纳米化是晶粒碎化与纳米尺度新相形成共同作用的结果.与心部相比,表面硬度显著提高.  相似文献   

3.
机械研磨诱导316L不锈钢表层组织的演变   总被引:13,自引:2,他引:13  
吕爱强  刘刚  刘春明 《金属学报》2004,40(9):943-947
选取具有中等层错能的316L不锈钢进行表面机械研磨处理(SMAT),制备出纳米结构表层,用X射线衍射(XRD)和透射电镜(TEM)研究横截面组织的演变过程.晶粒细化机理如下:奥氏体粗晶内部通过位错湮灭和重组形成位错胞;应变量和应变速率的增加诱发了机械孪生,形成了片层状孪晶;孪晶内部通过位错的运动使显微组织逐渐由片层状向等轴状转变,且晶粒尺寸逐渐减小、取向差逐渐增大;最终形成等轴状、取向呈随机分布的纳米晶组织.同时,对层错能对微观变形方式和纳米化行为的影响进行了讨论。  相似文献   

4.
机械研磨处理 AZ91 D 镁合金表面晶粒细化研究   总被引:2,自引:2,他引:0  
韩宝军  何琼  杨妙 《表面技术》2014,43(4):32-36
目的研究AZ91D镁合金表面经机械研磨处理的晶粒细化行为与机制。方法通过表面机械研磨处理方法对密排六方结构的AZ91D镁合金进行表面强变形处理,并对表面变形层的微观结构进行表征。结果经过60 min的机械研磨处理后,样品表层形成了厚约80μm的变形层,变形层组织呈梯度分布。随着距表面距离的增加,晶粒逐渐变大,表层晶粒尺寸达到20 nm。结论通过机械研磨处理,AZ91D镁合金表面晶粒可以得到明显细化,达到纳米级,晶粒细化机制是孪生和位错滑移的综合作用。  相似文献   

5.
应变诱导晶粒细化与伸长率   总被引:5,自引:0,他引:5  
针对表面机械研磨处理导致的纳米化过程,分析了晶体结构与层错能(SFE)对纳米/超细晶粒组织塑性变形及晶粒细化机制的影响。在低层错能,热力学亚稳态的纳米/超细晶粒组织中,存在应变诱导的马氏体相变,孪生与位错分解等塑性变形方式,拉伸变形时发生相变诱发塑性(TRIP)效应,指出TRIP效应可以是提高拉伸伸长率的机制。  相似文献   

6.
采用表面机械研磨(Surface Mechanical Attrition Treatment,SMAT)在304不锈钢表面制备出纳米晶层(平均晶粒尺寸20nm)。采用腐蚀失重试验和极化曲线测试等方法比较了粗晶(Coarse-grained,CG)和纳米晶(Nano-crystallized,NC)304不锈钢在室温及80℃条件下5%(质量分数)硫酸溶液中的耐蚀性,采用透射电镜(TEM)观察表面纳米化后的微观结构,并利用扫描电镜(SEM)分析了腐蚀行为和微观结构的关系。失重试验结果表明,在两种温度条件下的稀硫酸溶液中,纳米晶结构的304不锈钢耐腐蚀性能明显变差,腐蚀特征以沿晶破坏为主,局部显示出均匀腐蚀形态。电化学测试结果表明,纳米化后的304不锈钢具有更低的自腐蚀电位和更高的自腐蚀电流密度。  相似文献   

7.
表面机械研磨对304不锈钢渗氮组织性能的影响   总被引:1,自引:0,他引:1  
对304不锈钢表面进行表面机械研磨处理(SMAT),再进行不同温度下的低温等离子渗氮。利用光学显微镜、XRD、SEM和EDS,分析渗氮层的物相、显微组织和元素;采用显微硬度计检测渗氮后硬度的变化;采用电化学工作站测试渗氮后试样的腐蚀性能。结果表明,经过1800 s的表面机械研磨处理,材料的渗氮组织性能达到最好,样品表面生成一层晶粒细化层,可以明显促进304不锈钢的低温渗氮。1800 s的表面机械研磨处理后,在350℃下进行渗氮,可以获得一层厚度约3μm的渗氮层,其硬度高达925 HV0.05。和未处理的试样对比,自腐蚀电位升高了0.2 V,自腐蚀电流降低了4.22×10-4A·cm-2。  相似文献   

8.
通过对未表面纳米化、表面机械研磨处理(SMAT)法表面纳米化和表面纳米化后退火处理的316L不锈钢性能变化的研究,试图获得一种可以提高该材料表面硬度和抗点蚀性能的方法。采用点蚀实验和硬度实验方法,并在3.5%NaCl水溶液中测量了不同样品的极化曲线。结果表明,316L不锈钢表面纳米化后抗点蚀性能下降;表面纳米化后经退火处理的316L不锈钢随退火温度升高和退火时间延长抗点蚀性能会重新恢复。316L不锈钢经SMAT法表面纳米化加适当退火,可以获得较高硬度和较高抗点蚀性能的表面层。  相似文献   

9.
机械研磨处理Zr-4合金表面纳米化研究   总被引:1,自引:0,他引:1  
选用表面机械研磨技术(SMAT)处理密排六方结构Zr-4合金的表面,实现Zr-4表面纳米化,并利用X射线衍射(XRD)对比分析不同时间SMAT处理Zr-4合金表面平均晶粒尺寸。SMAT处理15min时Zr-4合金表面平均晶粒尺寸最小,约为20nm。利用光学显微镜(OM)、透射电镜(TEM)、高分辨透射电镜(HRTEM)对其纳米化表层结构进行表征,并研究了其表面纳米化机制。  相似文献   

10.
利用表面机械研磨处理(SMAT)技术在纯Ni上制备一定厚度的纳米晶表层,利用X射线衍射(XRD)和透射电镜(TEM)研究了纳米晶Ni的晶粒生长动力学,计算了描述晶粒生长动力学的时间指数n和晶粒生长激活能Q.研究表明,纳米晶Ni在423~723 K退火时的时间指数n约为0.14.当纳米晶Ni在423 ~523 K退火时,其晶粒生长激活能Q为32.1 kJ/mol,表明在这一温度区间内晶粒生长由晶界和亚晶界的微结构重新排列所控制;当纳米晶Ni在523~723 K退火时,晶粒生长激活能Q为121.3 kJ/mol,表明在这一温度区间内晶粒生长由晶界扩散所控制.TEM观察表明纳米晶Ni在较高温度下退火时出现异常的晶粒长大现象.  相似文献   

11.
表面纳米化对304不锈钢/CrN薄膜力学性能的影响   总被引:1,自引:0,他引:1  
表面纳米化可以显著改善金属材料的表面力学性能,并促进氮、铬等原子的热扩散,文中尝试采用表面纳米化技术改善金属基体/硬质薄膜的力学性能.对304不锈钢采用表面机械研磨处理获得纳米晶粒表层,采用多弧离子镀镀方法在表面纳米化和粗晶粒的304不锈钢基体上沉积CrN薄膜.对两种膜基体系采用X射线衍射、显微硬度测试、压入法和划痕法膜基结合性能评价.结果表明,表面纳米化影响了CrN膜层的组织结构,明显提高了膜基体系的硬度和承载能力,还改善了膜层的韧性,膜基结合性能也得到提高.  相似文献   

12.
剧烈塑性变形条件下工业纯钛晶粒细化机理研究   总被引:1,自引:1,他引:0  
通过对工业纯钛表面机械研磨(SMAT)这种变形方式的结果和微观组织变化的研究,分析了工业纯钛的品粒细化机制,讨论了其他剧烈塑性变形技术无法制备出晶粒尺寸更小的纳米晶的原因.结果表明:对于工业纯钛,SMAT这种具有高的应变速率和多方向载荷的变形方式,有利于形成细小的纳米晶;同时高应变速率增加了位错滑移的临界分切应力.  相似文献   

13.
用旋转辊压塑性变形方法在7A04铝合金表层获得纳米晶组织,用DSC和透射电镜研究了表面纳米晶组织的热稳定性。DSC测试结果表明7A04铝合金表面纳米晶的再结晶温度在473K左右,透射电镜分析表明表面纳米化样品473K退火后晶粒没有明显长大,平均晶粒尺寸约100nm。旋转辊压变形160min,表面层显微硬度由160HV升高到335HV,473K退火后显微硬度下降至250HV,但仍高于基体,573K退火后从表层到基体的显微硬度均明显下降。结果表明7A04表面纳米化组织的使用温度在473K以下。  相似文献   

14.
贾丹  胡兰青 《热加工工艺》2012,41(8):144-146
采用表面机械研磨的方法,在Al-Zn-Mg合金表面获得了厚20μm、晶粒尺寸为20~25 nm的纳米晶化层,使其表层硬度提高了约4倍。经透射电镜(TEM)观察发现,铝合金在表面机械研磨的过程中,原始粗晶粒内部出现位错墙和位错缠绕结构。随着变形量的增大,位错墙和位错缠绕结构逐步演变成小角度取向差的亚晶界,直至变成大角晶界,形成了纳米晶化层。  相似文献   

15.
运用表面机械研磨技术(SMA)合成低碳钢纳米表面层,且通过不同的技术形式来表征其表层的细微结构,并测得不同深度的硬度值.实验结果表明其显微结构沿深度方向不均匀变化.从表层到大约40μm深的区域,晶粒大小从10 nm增至100 nm;大约40~80nm深的相邻区域,晶粒大小从100nm增至1000 nm.晶粒的细化与位错的活性有关,经表面机械研磨处理后,低碳钢表层的硬度与原始试样的硬度相比得到了明显的增强,这有利于晶粒细化.  相似文献   

16.
表面纳米化Zr的拉伸性能   总被引:2,自引:0,他引:2  
利用表面机械研磨处理(SMAT)技术在Zr片状拉伸样品表面施加剧烈变形,获得超细/纳米晶粒组织的变形细化表层,其中Zr板厚度1mm,两侧变形层厚度均为100μm。拉伸实验结果表明,表层细化组织提高了屈服强度和抗拉强度,使加工硬化能力及伸长率下降。应变速率在10^-4~10^-3s^-1范围时,拉伸强度随应变速率的提高而提高;应变速率增大至10^-2s^-1量级时,抗拉慢度下降。扫描电镜观察显示出韧性韧窝状断裂特征.  相似文献   

17.
低碳钢表面纳米化处理及结构特征   总被引:30,自引:0,他引:30  
雍兴平  刘刚  吕坚  卢柯 《金属学报》2002,38(2):157-160
采用表面机械研磨技术在低碳钢上制备出纳米结构表层,利用X射线衍射和电子显微分析研究表层的结构特征,并对厚度沿厚度方向的变化进行分析,结果表明,经过表面机械研磨处理后,样品表层的晶粒可细化至纳米量级,表面纳米晶层的厚度约为40μm,平均晶粒尺寸由10nm,逐渐增加到100nm,在距表面约40-80μm的深度为亚微晶层,平均晶粒尺寸进一步增至1000nm,与样品的心部相比,表层的硬度显著提高。  相似文献   

18.
采用表面机械研磨处理(SMAT)在304不锈钢表面形成纳米晶粒表层,对粗晶粒和表面纳米化的304不锈钢试样采用一种较为环保的新型介质在450℃进行氮碳共渗(分别标记为CG-NC和SNC-NC试样)。结果表明,氮碳共渗的两种试样表面光滑,表层主要由含氮的S相组成,但SNC-NC试样仍保留纳米晶粒的表面结构。SNC-NC试样的氮原子扩散深度(13.3μm)、硬度(1040 HV0.05)和耐磨性都高于CG-NC试样(8.2μm,780 HV0.05)。  相似文献   

19.
使用自制的环形磁刷工具配合多轴运动电解复合磁力研磨机,对SUS304不锈钢套内圆表面进行磁力研磨加工试验,探讨氧化铝磨粒粒径、加工时间、加工负荷以及加工电流对表面粗糙度的影响。结果表明:在纯磨粒磁力研磨试验中,当磨粒粒径为3 μm、加工负荷为2 N及振动频率为4 Hz时,研磨加工10 min后,Rmax=0.198 μm、Ra=0.045 μm, 而在纯电解磁力研磨试验中,在负荷2 N与加工电流200 mA的加工条件下,研磨10 min后,Rmax=0.292 μm、Ra=0.069 μm,较纯磨粒磁力研磨效果稍差;在电解复合磨粒的磁力研磨中,当磨粒粒径为3 μm、加工负荷为2 N、振动频率为4 Hz及加工电流为200 mA时,可获得最理想的研磨结果,加工10 min后,Rmax=0.146 μm、Ra=0.033 μm,效果优于纯磨粒和电解的磁力研磨;在工具无进给的两阶段电解复合磁力研磨试验中,先使用3 μm粒径的磨粒、2 N的加工负荷、4 Hz的振动频率以及200 mA的加工电流,研磨4 min,随后更换粒径为1 μm的磨粒,研磨12 min后,Rmax=0.112 μm、Ra=0.024 μm,此时工件内表面已被加工成镜面。  相似文献   

20.
表面纳米化对低碳钢擦磨损性能的影响   总被引:12,自引:1,他引:11  
王镇波  雍兴平  陶乃殚  李曙  刘刚  吕坚  卢柯 《金属学报》2001,37(12):1251-1255
用表面机械碱研磨对低碳钢板材进行表面处理,经X射线衍射及透射电镜分析表明,处理后的样品上已形成了纳米结构表层,用往复式摩擦实验机研究了处理后样品的摩擦磨损性能。结果表明其摩擦系数较未处理样品明显降低,其磨损量在低载荷及中等载荷作用下也较未处理样品降低,磨痕形貌的扫描电镜观察表明,表面纳米化能减弱低碳钢的疲劳磨损效应,提高材料的摩擦磨损性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号