首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper presents an efficient method to solve a large body scattering problem, viz. a paraboloid reflector antenna system, with only partial circular symmetry. The asymmetry in the system is introduced by two factors, viz. the microstrip feed and an inhomogeneous radome. The paper presents a novel approach, based on the equivalence and reciprocity principles and the “equivalent” aperture theory, to overcome the asymmetry problem. The technique thereby enables substantial computational efficiencies by analyzing the majority of the three-dimensional (3-D) computational domain in an effective two-dimensional (2-D) simulation, with the remainder being analyzed using a 3-D algorithm  相似文献   

2.
The pulsed FDTD method is used to analyse multiport junctions in rectangular waveguides. Two representative examples are considered, namely the H-plane tee junction and the folded H-plane tee junction. Computed results for the scattering parameters are compared to measurements performed by the authors.<>  相似文献   

3.
This paper presents an accurate and efficient model for the transient analysis of multiwall carbon nanotubes (MWCNT) using finite-difference time-domain (FDTD) method. The proposed model can be essentially used to analyze the functional and dynamic crosstalk effects of coupled-two MWCNT interconnect lines. Using the proposed model the voltage and current can be accurately estimated at any point on the interconnect line and furthermore, the model can be extended to coupled-n interconnect lines with a low computational cost. Crosstalk induced propagation delay, peak voltage, and its timing instance are measured using the proposed model and validated by comparing it to the HSPICE simulations. Over a random number of test cases it is observed that the average error in estimating the noise peak voltage on a victim line is less than 1%. The proposed model is extremely useful for accurate estimation of crosstalk induced performance parameters of MWCNT interconnects.  相似文献   

4.
The alternating-direction implicit finite-difference time-domain (ADI-FDTD) technique is an unconditionally stable time-domain numerical scheme, allowing the /spl Delta/t time step to be increased beyond the Courant-Friedrichs-Lewy limit. Execution time of a simulation is inversely proportional to /spl Delta/t, and as such, increasing /spl Delta/t results in a decrease of execution time. The ADI-FDTD technique greatly increases the utility of the FDTD technique for electromagnetic compatibility problems. Once the basics of the ADI-FDTD technique are presented and the differences of the relative accuracy of ADI-FDTD and standard FDTD are discussed, the problems that benefit greatly from ADI-FDTD are described. A discussion is given on the true time savings of applying the ADI-FDTD technique. The feasibility of using higher order spatial and temporal techniques with ADI-FDTD is presented. The incorporation of frequency dependent material properties (material dispersion) into ADI-FDTD is also presented. The material dispersion scheme is implemented into a one-dimensional and three-dimensional problem space. The scheme is shown to be both accurate and unconditionally stable.  相似文献   

5.
A comparison is made between several different methods that have recently been proposed for efficiently modeling electrically thin material sheets in the finite-difference-time-domain (FDTD) method. The test problems used in the comparison are parallel-plate waveguides loaded with electrically thin dielectric (lossless) and conducting sheets for which exact solutions are available. The accuracy of the methods is illustrated by comparison with analytical results for model problems that have exact solutions  相似文献   

6.
The finite-difference time-domain (FDTD) and its current generalizations have been demonstrated to be useful and powerful tools for the calculation of the radar cross section (RCS) of complicated objects, the radiation of antennas in the presence of other structures, and other applications. The mathematical techniques for conformal FDTD have matured; the primary impediments to its implementation are the complex geometries and material properties associated with the problem. Even under these circumstances, FDTD is more flexible to implement because it is based on first principles instead of a clever mathematical trick. This paper gives an account of some new results on conformal FDTD obtained by the authors and their associates at Lockheed Martin Space Company since 1988. The emphasis is on nonsmooth boundary condition simulation  相似文献   

7.
In this paper, a multilayered on-chip power distribution network consisting of two million passive elements has been modeled using the finite-difference time-domain (FDTD) method. In this method, a branch capacitor has been used. The use of the branch capacitor is important for simulating multilayered power grids. In addition, a method for including the CMOS inverter characteristics into the FDTD simulation has been presented. As an example of the application of this method, an H-tree clock network was simulated to compute the power supply noise distribution across an entire chip. Various scenarios with varying decoupling capacitances, load capacitances, number of clock buffers, and rise times have been analyzed to demonstrate the importance of circuit nonlinearity on power supply noise. Also, a method has been presented for analyzing package and board planes. Based on the methods presented, the interaction between chip and package has been discussed for capturing the resonant behavior that is otherwise absent when each section of the system is analyzed separately.  相似文献   

8.
圆环天线的时域有限差分分析   总被引:1,自引:0,他引:1  
采用时域有限差分算法(FDTD)计算了圆环天线在高斯脉冲激励下的瞬时电流分布,通过付里叶变换,获得天线在不同频率下的稳态电流分布,经过进一步计算,得出天线在这组频率下的辐射方向图和输入阻抗。  相似文献   

9.
The impedance and admittance formulas of a cable with low-conducting layers have not yet been derived, and thus a transient analysis considering the layers cannot be carried out sufficiently by an existing transient analysis program such as the Electro-Magnetic Transients Program. The present brief has analyzed a transient response of a power cable including low-conducting layers using a finite-difference time-domain method. Transient current waveforms at both ends of the cable are distorted depending on the conductivity of the low-conducting layers. Also, the propagation velocity of a surge current is dependent on it. When the conductivity of low-conducting layers is around 10/sup -3/ S/m, the shunt admittance of the cable dominates the above phenomena. On the other hand, they are ascribable to the series impedance when the conductivity is about 10 S/m.  相似文献   

10.
Light scattering by a micro-channel intersecting core of a single mode fiber (SMF) has been investigated by use of two dimensional time-domain finite difference (2D-FDTD) method and the numerical results are in good agreement with those reported in the experiments. The transmission properties of the SMF with such a micro-channel can be attributed to the combined results of scattering effect and FP resonance effect. It is suggested that the SMF with micro-channel of about 4–6 μm in diameter can be effectively used for refractive index sensing with a high refractive index resolution up to ∼10−5.  相似文献   

11.
We present full-wave analysis of traveling-wave photodetectors (TWPDs) using the finite-difference time-domain (FDTD) method. Impulse response in the frequency domain is obtained after time-domain data are calculated by the FDTD method. The impulse response includes the optical field profile, carrier transit time, microwave loss, microwave dispersion, and velocity mismatch all together. Three-decibel bandwidth is analyzed with the thickness of an i-layer and waveguide width as the design parameters. It is shown how transit time and microwave characteristics affect the bandwidth according to the TWPD's length. Three-decibel bandwidth is dominated by carrier transit time in case the device length is shorter than 300-500 /spl mu/m under the conditions given in this paper. However, if the device length gets longer, microwave characteristics affect the bandwidth.  相似文献   

12.
A simple and efficient analysis method of the shielded membrane microstrip (SMM) line using the finite-difference time-domain (FDTD) method is presented. New FDTD equations are derived using the contour path FDTD concept for the Yee cell which contains three thin dielectric sheets of membrane. The characteristic impedance and the effective dielectric constant of the SMM line are calculated using our proposed method. The method is validated by comparison with the results shown by Robertson et al. [1996].  相似文献   

13.
Microstrip discontinuities are analyzed using Wheeler's waveguide model and the finite-difference time-domain (FDTD) method. Wheeler's model employs a conformal transformation to convert a microstrip into an enclosed waveguide structure. This permits the mapping of a discontinuous microstrip into a discontinuous, but enclosed, waveguide. The enclosed waveguide eliminates the difficulties usually associated with analysis of an open domain geometry. The FDTD technique is then used to calculate the scattering coefficients of the discontinuous waveguide. The features of this approach are: (1) it yields a smaller computational domain than that required to analyze the untransformed geometry; (2) it yields results over a band of frequencies; and (3) it is simple to implement. Results obtained using this scheme show good agreement with previously published results  相似文献   

14.
This article presents an efficient conformal-mesh generating technique suitable for the conformal finite-difference time-domain (CFDTD) technique. We describe the mesh generation for different types of objects, including planar structures (patch antennas and microwave circuits), as well as for arbitrary three-dimensional structures created by using AutoCAD, GID, or other commercial solid modelers. The versatility of the mesh-generation tool is illustrated through several examples.  相似文献   

15.
In this paper, an unconditionally stable three-dimensional (3-D) finite-difference time-method (FDTD) is presented where the time step used is no longer restricted by stability but by accuracy. The principle of the alternating direction implicit (ADI) technique that has been used in formulating an unconditionally stable two-dimensional FDTD is applied. Unlike the conventional ADI algorithms, however, the alternation is performed in respect to mixed coordinates rather than to each respective coordinate direction, Consequently, only two alternations in solution marching are required in the 3-D formulations. Theoretical proof of the unconditional stability is shown and numerical results are presented to demonstrate the effectiveness and efficiency of the method. It is found that the number of iterations with the proposed FDTD can be at least four times less than that with the conventional FDTD at the same level of accuracy  相似文献   

16.
A hyperthermia applicator design tool consisting of a finite-difference time-domain (FDTD) technique in combination with a graphical display of electric fields and normalized linear temperature rise is described. This technique calculates, rather than assumes, antenna current distributions; it includes mutual interactions between the body and the applicator, and it calculates driving-point impedance and power delivered to the applicator. Results show that the fundamental limitation of 2-D electric-type applicators is overheating of the fat by normal components of the electric field, which exist because of near fields and capacitive coupling with the muscle. Two factors which contribute to the capacitance are the muscle conductivity and the small antenna size in air. Two examples of applicators designed to avoid fat overheating are described: a 27-MHz segmented dipole for heating large tumors to 7 cm depth, and a 100-MHz dipole for small tumors to 5 cm depth. The first uses a water bolus, and the second uses a water bolus with low-permittivity strips to reduce normal fields at the antenna ends. The results of this study describe fundamental limitations of electric field applicators, and illustrate the use of a powerful applicator design tool that allows rapid evaluation of a wide range of ideas for applicators which would require months and years to test experimentally.  相似文献   

17.
The finite-difference time-domain (FDTD) technique was extended to analyze the frequency response of surface acoustic wave (SAW) filters. In this method, the partial derivatives of quasi-static Maxwell's equations and the equation of motion are discretized to centered finite differences. In addition, the perfectly matched layer boundary condition was applied to reduce spurious reflections. Two structures are considered in this paper. First, the model was applied to analyze the influence of the number of electrodes on the frequency response of a SAW filter fabricated on a zinc oxide (ZnO) substrate. Then, the proposed method was further extended to analyze the frequency response of a ZnO/diamond/Si-layered SAW filter. The simulated results are in a good agreement with the existing experimental data, indicating that the FDTD method was an appropriate approach for modeling SAW devices.  相似文献   

18.
We present a one-step algorithm that solves the Maxwell equations for systems with spatially varying permittivity and permeability by the Chebyshev method. We demonstrate that this algorithm may be orders of magnitude more efficient than current finite-difference time-domain (FDTD) algorithms.  相似文献   

19.
For a given FDTD simulation space with an arbitrarily shaped boundary and an arbitrary exterior region, most existing absorbing boundary conditions become inapplicable. A Green's function method (GFM) is presented which accommodates arbitrarily shaped boundaries in close proximity to a scattering object and an arbitrary composition in the exterior of the simulation space. Central to this method is the numerical precomputation of a Green's function tailored to each problem which represents the effects of the boundary and the external region. This function becomes the kernel for a single-layer absorbing boundary operator, it is formulated in a manner which naturally incorporates numerically induced effects, such as the numerical dispersion associated with the FDTD scheme. The Green's function is an exact absorber in the discretized space. This property should be contrasted with other methods which are initially designed for the continuum and are subsequently discretized, thereby incurring inherent errors in the discrete space which cannot be eliminated unless the continuum limit is recovered. In terms of accuracy, the GFM results have been shown to be of a similar quality to the PML, and decidedly superior to the Mur (1981) condition. The properties of the GFM are substantiated by a number of numerical examples in one, two, and three dimensions  相似文献   

20.
An exact and nonlocal analytical absorbing boundary condition (ABC) for use in the finite-difference-time-domain (FDTD) method is proposed. The ABC requires no assumptions regarding a minimum spacing between scatterers and the artificial termination planes, and is not a function of the angle of an incident wave component with respect to the ABC truncation plane. Hence the size of the volumetric computational domain may be kept to a minimum. The derivation of the ABC makes use of the surface equivalent theorem and the vector potentials after an analytical frequency to time domain transformation. The new ABC contains derivatives with respect to both time and space, and may be approximated in the FDTD method via appropriate finite difference approximations  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号