首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
涡轮导向叶片的失效分析EI   总被引:1,自引:0,他引:1  
周卓华  朱蓓蒂 《材料工程》1995,(2):45-47,11
使用光学、电子等微观手段及宏观力学分析方法证明,由不均匀的温度分布所引起的热应力、燃气中的腐蚀性介质及铸态组织中的枝晶是引起涡轮叶片开裂的主要原因。本文还对提高其使用寿命的方式进行了探讨。  相似文献   

2.
高压涡轮导向叶片裂纹分析   总被引:3,自引:0,他引:3  
对某发动机高压涡轮导向叶裂纹的性质和产生原因进行了分析。结果表明,导向器叶片裂纹的性质属典型的热疲劳断裂失效,引起该发动机导向叶片热疲劳断裂失效的主要原因是试验温度偏高,温度场分布不均,排气边冷却效果不良也是影响叶片开裂的因素。  相似文献   

3.
某发动机二级涡轮叶片断裂失效分析   总被引:1,自引:0,他引:1  
在叶片断口宏微观断裂特征观察的基础上,结合叶片的金相组织、力学性能、硬度以及化学成分等,对叶片断裂失效的原因进行了研究.结果表明,发动机二级涡轮叶片失效是由于其中一片涡轮叶片低周疲劳断裂所致.该叶片的低周疲劳断裂失效与源区附近的R槽中的微裂纹、Zr含量偏高、HRC偏高以及断裂处在高应力区等因素有关,且叶片经历了短时超温,其温度约在1050~1100℃之间.  相似文献   

4.
某厂生产的发动机涡轮导向叶片存在渗铝层容易剥落的问题.采用扫描电镜、X射线能谱仪和显微硬度计,从渗层的显微组织、成分及力学性能等方面,对渗层失效的原因进行了分析.结果表明,渗层中铝含量过高,形成了Ni2Al3脆性相是导致叶片渗层过脆的主要原因,而渗层过厚也是导致叶片渗层过脆的原因之一.检查工厂的渗铝工艺,发现渗剂活性过高是造成渗层中铝含量过高的根本原因.  相似文献   

5.
对WJ5发动机机导向叶片的断裂失效进行了分析。结果表明:严重的热腐蚀是造成叶片失效的原因。还讨论了硫的来源及解决方法。  相似文献   

6.
某型涡桨发动机涡轮叶片在长期使用过程中出现了两种类型的裂纹与断裂失效,一类是使用寿命超过4500h时在榫齿R处出现较普遍的裂纹,另一类则是使用600h以上时在榫齿与伸根R处的断裂.在断口宏、微观观察与痕迹分析的基础上,结合成分、硬度、晶粒度测定以及有限元应力分析,对这两类失效的性质与原因进行了分析研究.结果表明,使用寿命超过4500h时叶片榫齿裂纹为蠕变-疲劳裂纹,其原因是叶片材料难以满足发动机长寿命的使用要求;而榫齿与伸根R处的断裂则是大应力机械疲劳断裂,其原因可能与相邻叶片间隙偏大致使出现较高的振动弯曲应力以及表面较深的加工锉痕引起的应力集中有关.  相似文献   

7.
本文采用商业软件对航空发动机低压涡轮一级导向叶片冷气流量进行了数值仿真计算,研究了单联导向叶片及三联导向叶片内腔冷却气体的质量流量。计算结果表明,数值仿真计算的质量流量值与水流量设备检测的质量流量值比较吻合,并且三联叶片的质量流量值基本上等于单联叶片质量流量值的三倍。因此,可以用此数值仿真计算方法计算单联叶片内腔冷却气流的质量流量,以此反应双联、三联及多联涡轮导向叶片的冷却气体流量的质量流量。  相似文献   

8.
涡轮分子泵是一种精密高速旋转机械,在设计过程中对主轴、转子等关键件的设计作科学准确的计算、校核尤为重要。文章阐述了借助PRO/E、PRO/MECHANICA软件(试用版)对涡轮分子泵的涡轮叶片进行结构设计、有限元分析(应力分析及位移分析),大大提高了设计的准确率、增强了设计的可靠性及缩短了产品的研发周期。把CAD、CAE有效地应用于实际的产品结构设计中,将会对产品的研发起很大的作用。  相似文献   

9.
对WP13F发动机Ⅱ级涡轮叶片排气边裂纹、断裂进行了汇总分析。该叶片裂纹、断裂都属于以低周疲劳为主的高、低周复合疲劳失效模式;在疲劳起始区均存在一个黑色粗糙区(月牙形多晶区);断口上存在的大量粗大初生碳化物降低了材料的断裂韧性,加速了疲劳裂纹的扩展。  相似文献   

10.
某涡轮套使用3个月后发生开裂。采用光学显微镜、扫描电镜及能谱仪对失效涡轮套进行了分析。结果表明,钢中存在的夹杂物,在应力作用下,成为疲劳裂纹源并不断扩展,最后导致涡轮套发生开裂。  相似文献   

11.
航空发动机涡轮转子叶片的失效与教训   总被引:4,自引:0,他引:4  
钟培道 《材料工程》2003,(Z1):30-33
列举了我国航空发动机涡轮转子叶片20起典型失效事件的失效模式、形成原因及其影响,并阐述了这些失效事件的基本特征以及应吸取的教训.  相似文献   

12.
吴霖  吴培远 《材料工程》1993,(10):43-45
一、概述 涡轴六发动机是直八飞机的动力装置,有两级燃气涡轮,都是涡轮盘和叶片为一体的整体件。涡轮最高转速为33000转/分,材料为变形GH71O合金,相似于美国Udimet710合金。 010号发动机在100Oh长期台架试车过程中,工作到879h14min、反复起动701次时,发动机出现异常振动,经分解检查,发现Ⅰ级燃气涡轮21~#叶片断裂。其余叶片未断,但许多叶片被折断叶片击伤,使排气边顶端发生不同程度变形,甚至开裂、缺损。  相似文献   

13.
张琼  蔡传荣 《福建分析测试》2001,10(1):1380-1382
利用电子显微镜对汽轮机叶片断裂原因进行分析,结果是疲劳断裂。  相似文献   

14.
2005年投入运行的汽轮机在2013年3月突然发生异常振动,检查发现汽轮机末级叶片发生了断裂。对叶片断口、材料的化学成分、显微组织及夹杂物进行了分析。结果表明,叶片的断裂属于腐蚀疲劳断裂。针对叶片失效情况提出了一些相应的预防措施。  相似文献   

15.
钟培道  闫海 《材料工程》1996,(9):42-44,30
研究了K405高温合金精铸涡轮叶片断裂失效的性质与原因,结果表明,叶片制造过程中表面遭受Bi-Sn低熔点合金污染,在使用温度与拉应力作用下出现脆性开裂,从而导致早期疲劳断裂失效。  相似文献   

16.
本文采用有限元方法,分析了DQ-23燃气涡轮起动机动力涡轮叶片的固有特性,以及叶片在离心力载荷作用下的应力分布情况,通过计算分析找出了涡轮叶片断裂故障的主要原因,为该型起动机涡轮叶片的设计改进和安全使用规范的制定提供了理论依据。  相似文献   

17.
18.
对进口柴油发电机组正常运行半年后,因涡轮增压器压气端BS轴承失效引起的停机事故进行了失效分析.通过服役条件、现场调研及残骸等分析,找出BS轴承铝合金保持架碎裂是最早失效件.进一步的分析排除了轴承润滑不良引起保持架碎裂的可能性;电镜断口及金相分析查明LA34型轴承装配质量不良和铝合金保持架材料中存在较多的夹杂物和疏松是保持架疲劳断裂的主要原因.  相似文献   

19.
某发动机三级涡轮转子叶片在飞机赶快冰爬升时断裂,通过断口SEM观察,EDAX成分分析,叶片基材金相检验和硬度测试等分析了叶片的断裂原因和机制,结果表明,共振是叶片失稳断裂的直接原因,热疲劳萌生裂纹,高温腐蚀疲劳控制裂纹稳态扩展,材料冶金缺陷对叶片断裂过程有促进作用。  相似文献   

20.
目的 研究船用轴流涡轮叶片厚度对涡轮性能的影响,为高性能涡轮设计提供参考。方法 基于计算流体力学(CFD)仿真,模拟分析了2种叶片厚度下的叶片压力、涡轮流通特性及效率特性。结果 在相同膨胀比条件下,当叶片厚度从16.12 mm增大至16.61 mm(叶根处宽度)时,折合流量下降。当膨胀比从1.5增大到2时,加厚叶片的折合流量从0.216增长至0.238,未加厚叶片的折合流量从0.219增长至0.243。当膨胀比从2继续增大时,涡轮流量随膨胀比的变化而趋于平缓。当膨胀比约为2时,涡轮效率达到最高。采用加厚叶片时,涡轮效率最高达到0.815;当膨胀比为1.5~2.68时,涡轮效率在0.8以上。当采用未加厚叶片时,涡轮效率最高达到0.808;当膨胀比为1.6~2.38时,涡轮效率才能达到0.8以上。结论 转子叶片的加厚有利于降低能量损失,且叶片表面产生旋转涡流有助于减轻尾缘处的速度冲击,进一步降低了能量损失;但转子叶片过厚会限制流体的通量,使转子的通流面积减小,涡轮的折合流量减小;在大膨胀比条件下,加厚叶片涡轮的堵塞流量明显小于未加厚涡轮的。涡轮效率随膨胀比的增大而先增大后减小。随着叶片厚度的增大,涡轮整体效率增大,高效区范围增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号