首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a single-bit-line cross-point cell activation (SCPA) architecture, which has been developed to reduce active power consumption and to avoid increase in the size of high-density SRAM chips, such as 16-Mb SRAM's and beyond. A new PMOS precharging boost circuit, introduced to realize the single-bit-line structure, is also discussed. This circuit is suitable for operation under low-voltage power supply conditions. The SCPA architecture with the new word-line boost circuit is demonstrated with the experimental device, which is fabricated by a 0.4-μm CMOS wafer process technology  相似文献   

2.
A 1-Mb (256 K×4) CMOS SRAM with 6-ns access time is described. The SRAM, having a cell size of 3.8 μm×7.2 μm and a die size of 6.09 mm×12.94 mm, is fabricated by using 0.5-μm triple-polysilicon and double-metal process technology. The fast access time and low power dissipation of 52 mA at 100-MHz operation are achieved by using a new NMOS source-controlled latched sense amplifier and a data-output prereset circuit. In addition, an equalizing technique at the end of the write operation is used to avoid lengthening of access time in a read cycle following a write cycle  相似文献   

3.
A soft-error-immune, 0.9-ns address access time, 2.0-ns read/write cycle time, 1.15-Mb emitter coupled logic (ECL)-CMOS SRAM with 30-ps 120 k ECL and CMOS logic gates has been developed using 0.3-μm BiCMOS technology. Four key developments ensuring good testability, reliability, and stability are on-chip test circuitry for precise measurement of access time and for multibit parallel testing, a memory-cell test technique for an ECL-CMOS SRAM, a highly stable current source with a simple design using a current mirror, and a soft-error-immune memory cell using a silicon-on-insulator (SOI) wafer. These techniques will be especially useful for making the ultrahigh-speed, high-density SRAM's used as cache and control storages in mainframe computers  相似文献   

4.
An ultrahigh-speed 4.5-Mb CMOS SRAM with 1.8-ns clock-access time, 1.8-ns cycle time, and 9.84-μm2 memory cells has been developed using 0.25-μm CMOS technology. Three key circuit techniques for achieving this high speed are a decoder using source-coupled-logic (SCL) circuits combined with reset circuits, a sense amplifier with nMOS source followers, and a sense-amplifier activation-pulse generator that uses a duplicate memory-cell array. The proposed decoder can reduce the delay time between the address input and the word-line signal of the 4.5-Mb SRAM to 68% of that of an SRAM with conventional circuits. The sense amplifier with nMOS source followers can reduce not only the delay time of the sense amplifier but also the power dissipation. In the SRAM, the sense-amplifier activation pulse must be input into the sense amplifier after the signal from the memory cell is input into the sense amplifier. A large timing margin required between these signals results in a large access time in the conventional SRAM. The sense-amplifier activation pulse generator that uses a duplicate memory-cell array can reduce the required timing margin to less than half of the conventional margin. These three techniques are especially useful for realizing ultrahigh-speed SRAM's, which will be used as on-chip or off-chip cache memories in processor systems  相似文献   

5.
A 20 ns 4-Mb CMOS SRAM operating at a single supply voltage of 3.3 V is described. The fast access time has been achieved by a newly proposed word-decoding architecture and a high-speed sense amplifier combined with the address transition detection (ATD) technique. The RAM has the fast address mode, which achieves quicker than 10-ns access, and the 16-b parallel test mode for the reduction of test time. A 0.6-μm process technology featuring quadruple-polysilicon and double-metal wiring is adopted to integrate more than 16 million transistors in a 8.35-mm×18.0-mm die  相似文献   

6.
A 9-ns 16-Mb CMOS SRAM has been developed using a 0.35-μm CMOS process, The current-mode fully nonequalized data path has been realized in a CMOS SRAM for the first time by using a stabilized feedback current-sense amplifier (SFCA) that provides a small input resistance and an offset compensation effect. To reduce the test time, a bit-line wired-OR parallel test circuit has been implemented  相似文献   

7.
A 7-ns 140-mW 1-Mb CMOS SRAM was developed to provide fast access and low power dissipation by using high-speed circuits for a 3-V power supply: a current-sense amplifier and pre-output buffer. The current-sense amplifier shows three times the gain of a conventional voltage-sense amplifier and saves 60% of power dissipation while maintaining a very short sensing delay. The pre-output buffer reduces output delays by 0.5 ns to 0.75 ns. The 6.6-μm2 high-density memory cell uses a parallel transistor layout and phase-shifting photolithography. The critical charge that brings about soft error in a memory cell can be drastically increased by adjusting the resistances of poly-PMOS gate electrodes. This can be done without increasing process complexity or memory cell area. The 1-Mb SRAM was fabricated using 0.3-μm CMOS quadrupole-poly and double-metal technology. The chip measures 3.96 mm×7.4 mm (29 mm2)  相似文献   

8.
A 16-Mb CMOS SRAM using 0.4-μm CMOS technology has been developed. This SRAM features common-centroid-geometry (CCG) layout sense amplifiers which shorten the access time by 2.4 ns. A flexible redundancy technique achieves high efficiency without any access penalty. A memory cell with stacked capacitors is fabricated for high soft-error immunity. A 16-Mb SRAM with a chip size of 215 mm2 is fabricated and an address access time of 12.5 ns has been achieved  相似文献   

9.
A 4-Mb CMOS SRAM with 3.84 μm2 TFT load cells is fabricated using 0.25-μm CMOS technology and achieves an address access time of 6 ns at a supply voltage of 2.7 V. The use of a current sense amplifier that is insensitive to its offset voltage enables the fast access time. A boosted cell array architecture allows low voltage operation of fast SRAM's using TFT load cells  相似文献   

10.
A 1.5-ns access time, 78-μm2 memory-cell size, 64-kb ECL-CMOS SRAM has been developed. This high-performance device is achieved by using a novel ECL-CMOS SRAM circuit technique: a combination of CMOS cell arrays and ECL word drivers and write circuits. These ECL word drivers and write circuits drive the CMOS cell arrays directly without any intermediate MOS level converter. In addition to the ultrahigh-speed access time and relatively small memory-cell size, a very short write-pulse width of 0.8 ns and sufficient soft-error immunity are obtained. This ECL-CMOS SRAM circuit technique is especially useful for realizing ultrahigh-speed high-density SRAMs, which have been used as cache and control storages of mainframe computers  相似文献   

11.
A 2 K×8-b, ECL 100 K compatible BiCMOS SRAM with 3.8-ns (-4.5 V, 60°) address access time is described. The precisely controlled bit-line voltage swing (60 mV), a current sensing method, and optimized ECL decoding circuits permit a reliable and fast readout operation. The SRAM features an on-chip write pulse generator, latches for input and output bits, and a full six-transistor CMOS cell array. Power dissipation is approximately 2 W, and the chip size is 3.9×5.9 mm2. The SRAM was based on 1.2-μm BiCMOS, using double-metal, triple-polysilicon, and self-aligned bipolar transistors  相似文献   

12.
A 256 K-word×16-bit dynamic RAM with concurrent 16-bit error correction code (ECC) has been built in 0.8-μm CMOS technology, with double-level metal and surrounding high-capacitance cell. The cell measures 10.12 μm2 with a 90-fF storage capacitance. A duplex bit-line architecture used on the DRAM provides multiple-bit operations and the potential of high-speed data processing for ASIC memories. The ECC checks concurrently 16-bit data and corrects a 1-bit data error. This ECC method can be adapted to higher-bit ECC without expanding the memory array. The ratio of ECC area to the whole chip is 7.5%. The cell structure and the architecture allow for expansion to 16-Mb DRAM. The 4-Mb DRAM has a 70-ns RAS access time without ECC and a 90-ns RAS access time with ECC  相似文献   

13.
A single 5-V power supply 16-Mb dynamic random-access memory (DRAM) has been developed using high-speed latched sensing and a built-in self-test (BIST) function with a microprogrammed ROM, in which automatic test pattern generation procedures were stored by microcoded programs. The chip was designed using a double-level Al wiring, 0.55-μm CMOS technology. As a result, a 16-Mb CMOS DRAM with 55-ns typical access time and 130-mm2 chip area was attained by implementing 4.05-μm2 storage cells. The installed ROM was composed of 18 words×10 b, where the marching test and checkerboard scan write/read test procedures were stored, resulting in successful self-test operation. As the BIST circuit occupies 1 mm2 and the area overhead is about 1%, it proves to be promising for large-scale DRAMs  相似文献   

14.
An erase and program control system has been implemented in a 60-ns 16-Mb flash EEPROM. The memory array is divided into 64 blocks, in each block, erase pulse application and erase-verify operation are employed individually. The erase and program sequence is controlled by an internal sequence controller composed of a synchronous circuit with an on-chip oscillator. A 60-ns access time has been achieved with a differential sensing scheme utilizing dummy cells. A cell size of 1.8 μm×2.0 μm and a chip size of 6.5 mm×18.4 mm were achieved using a simple stacked gate cell structure and 0.6-μm CMOS process  相似文献   

15.
A 16-Mb dynamic RAM has been designed and fabricated using 0.5-μm CMOS technology with double-level metallization. It uses a novel trench-type surrounding high-capacitance cell (SCC) that measures only 3.3-μm2 in cell size with a 63-fF storage capacitance. A novel relaxed sense-amplifier-pitch (RSAP) open-bit-line architecture used on the DRAM achieves a high-density memory cell array, while maintaining a large enough layout pitch for the sense amplifier. These concepts allow the small chip that measures 5.4×17.38 (93.85) mm2 to be mounted in a 300-mil dual-in-line package with 65-ns RAS access time and 35-ns column address access time  相似文献   

16.
A 4-Mb CMOS SRAM having 0.2-μA standby current at a supply voltage of 3 V has been developed. Current-mirror/PMOS cross-coupled cascade sense-amplifier circuits have achieved the fast address access time of 23 ns. A new noise-immune data-latch circuit has attained power-reduction characteristics at a low operating cycle time without access delay. A 0.5-μm CMOS, four-level poly, two-level metal technology with a polysilicon PMOS load memory cell, yielded a small cell area of 17 μm2 and the very small standby current. A quadruple-array, word-decoder architecture allowed a small chip area of 122 mm2  相似文献   

17.
A 4-Mb (512 K words by 8-b) CMOS static RAM (SRAM) with a PMOS thin-film transistor (TFT) has been developed. The RAM can obtain a much larger data-retention margin than a conventional high-resistive load-type well by using the PMOS TFT as a memory cell load. An internal voltage down-converter architecture with an external supply voltage-level sensor not only realizes a highly reliable 0.5-μm MOS transistor operation but also a sufficiently low standby-power dissipation characteristic for data battery-backup application. A self-aligned equalized level sensing scheme can minimize the sensing delay for a local sense amplifier to drive a large load capacitance of a global sensing bus line. The RAM is fabricated using a 0.5 μm, triple-poly, and double-aluminum with dual gate-oxide-thickness CMOS process technology. The RAM operates under a single 5-V supply voltage with 23-ns typical address access time and 20- and 70-mA operation current at 10 and 40 MHz, respectively  相似文献   

18.
An ultrahigh-speed 72-kb ECL-CMOS RAM macro for a 1-Mb SRAM with 0.65-ns address-access time, 0.80-ns write-pulse width, and 30.24-μm 2 memory cells has been developed using 0.3-μm BiCMOS technology. Two key techniques for achieving ultrahigh speed are an ECL decoder/driver circuit with a BiCMOS inverter and a write-pulse generator with a replica memory cell. These circuit techniques can reduce access time and write-pulse width of the 72-kb RAM macro to 71% and 58% of those of RAM macros with conventional circuits. In order to reduce crosstalk noise for CMOS memory-cell arrays driven at extremely high speeds, a twisted bit-line structure with a normally on MOS equalizer is proposed. These techniques are especially useful for realizing ultrahigh-speed, high-density SRAM's, which have been used as cache and control storages in mainframe computers  相似文献   

19.
A 29-ns (RAS access time), 64-Mb DRAM with hierarchical array architecture has been developed. For consistent high yields and high speed, a CMOS segment driver circuit is used as a hierarchical word line scheme. To achieve high speed, precharge signal (PC) drivers for equalizing the bit lines pairs, and shared sense amplifier signal (SHR) drivers are distributed in the array. To enhance sense amplifiers speed in low array voltage, an over driven sense amplifier is adopted. A hierarchical I/O scheme with semidirect sensing switch is introduced for high speed data transfer in the I/O paths. By combining these proposed circuit techniques and 0.25-μm CMOS process technologies with phase-shift optical lithography, an experimental 64-Mb DRAM has been designed and fabricated. The memory cell size is 0.71×1.20 μm 2, and the chip size is 15.91×9.06 mm2. A typical access time under 3.3 V power supply voltage is 29 ns  相似文献   

20.
DRAM macros in 4-Mb (0.8-μm) and 16-Mb (0.5-μm) DRAM process technology generations have been developed for CMOS ASIC applications. The macros use the same area efficient one transistor trench cells as 4-Mb (SPT cell) and 16-R Mb (MINT cell) DRAM products. It is shown that the trench cells with capacitor plates by the grounded substrate are ideal structures as embedded DRAM's. The trench cells built entirely under the silicon surface allow cost effective DRAM and CMOS logic merged process technologies. In the 0.8-μm rule, the DRAM macro has a 32-K×9-b configuration in a silicon area of 1.7×5.0 mm2 . It achieves a 27-ns access and a 50-ns cycle times. The other DRAM macro in the 0.5-μm technology is organized in 64 K×18 b. It has a macro area of 2.1×4.9 mm and demonstrated a 23-ns access and a 40-ns cycle times. Small densities and multiple bit data configurations provide a flexibility to ASIC designs and a wide variety of application capabilities. Multiple uses of the DRAM macros bring significant performance leverages to ASIC chips because of the wide data bus and the fast access and cycle times. A data rate more than 1.3 Gb/s is possible by a single chip. Some examples of actual DRAM macro embedded ASIC chips are shown  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号