首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Energy》2003,28(14):1427-1443
This paper introduces a novel concept of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio-)Diesel engine. The Organic Rankine Cycles include hermetic scroll expander-generators1 and the sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, that focus the solar energy onto a collector tube similar to those used in SEGS plants in California. Waste heat from both the exhaust gases and the block cooling of the thermal engine are also heat sources for the ORCs. Such units meet electricity, cooling and pumping needs of remote settlements. The thermal engine guarantees a minimum level of both power and heat availability at night or during cloudy periods. Laboratory tests, made with the superposed ORCs only, confirmed adequate operational characteristics with good performances over a broad range of conditions. A few preliminary tests on the site of the solar power plant when coupled with the engine confirmed a reasonable behavior and the interest of the concept even at part load or during sharp variations of the thermal supply.  相似文献   

2.
The performance of solar photovoltaic-thermoelectric generation hybrid system (PV-TGS) and solar photovoltaic-thermoelectric cooling hybrid system (PV-TCS) under different conditions were theoretically analysed and compared. To test the practicality of these two hybrid systems, the performance of stand-alone PV system was also studied. The results show that PV-TGS and PV-TCS in most cases will result in the system with a better performance than stand-alone PV system. The advantage of PV-TGS is emphasised in total output power and conversion efficiency which is even poorer in PV-TCS than that in stand-alone PV system at the ambient wind speed uw being below 3 m/s. However, PV-TCS has obvious advantage on lowering the temperature of PV cell. There is an obvious increase in tendency on the performance of PV-TGS and PV-TCS when the cooling capacity of two hybrid systems varies from around 0.06 to 0.3?W/K. And it is also proved that not just a-Si in PV-TGS can produce a better performance than the stand-alone PV system alone at most cases.  相似文献   

3.
罗桂荣  罗鸣 《太阳能》2006,(3):33-35
1前言从20世纪90年代到现在,国内外聚光式太阳能热发电系统是以聚光式太阳能锅炉取代矿物燃料锅炉,并联辅助常规能源锅炉和蓄热器进行发电的。太阳能热发电系统在热力学原理上也是按朗肯循环或勃莱顿循环运行的,而卡诺循环效率η_卡是工作于两个一定温度之间的所有热机效率η_(热机)的理论  相似文献   

4.
Solar/diesel/battery hybrid power systems have been modelled for the electrification of typical rural households and schools in remote areas of the far north province of Cameroon. The hourly solar radiation received by latitude-titled and south-facing modules was computed from hourly global horizontal solar radiation of Garoua using Hay's anisotropic model. Using the solar radiation computed for latitude-tilted and south-facing modules, the average daytime temperatures for Garoua and parameters of selected solar modules, the monthly energy production of the solar modules was computed. It was found that BP solar modules with rated power in the range 50–180 Wp produced energy in the range 78.5–315.2 kWh/yr. The energy produced by the solar modules was used to model solar/diesel/battery hybrid power systems that could meet the energy demand of typical rural households in the range 70–300 kWh/yr. It was also found that a solar/diesel/battery hybrid power system comprising a 1440 Wp solar array and a 5 kW single-phase generator operating at a load factor of 70%, required only 136 generator h/yr to supply 2585 kWh/yr or 7 kWh/day to a typical secondary school. The renewable energy fraction obtained in all the systems evaluated was in the range 83–100%. These results show that there is a possibility to increase the access rate to electricity in the far north province without recourse to grid extension or more thermal plants in the northern grid or more independent diesel plants supplying power to remote areas of the province.  相似文献   

5.
Depleting oil and gas reserves, combined with the growing concerns of global warming, have made it inevitable to seek alternative/renewable energy sources. The integration of renewables such as solar and wind energy is becoming increasingly attractive and is being used widely, for substitution of oil-produced energy, and eventually to minimize atmospheric degradation. The literature shows that commercial/residential buildings in Saudi Arabia consume an estimated 10–40% of the total electric energy generated. In the present investigation, hourly wind-speed and solar radiation measurements made at the solar radiation and meteorological monitoring station, Dhahran (26°32′ N, 50°13′ E), Saudi Arabia, have been analyzed to investigate the feasibility of using hybrid (wind+solar+diesel) energy conversion systems at Dhahran to meet the energy needs of twenty 2-bedroom houses. The monthly average wind speeds for Dhahran range from 4.1 to 6.4 m/s. The monthly average daily values of solar radiation for Dhahran range from 3.6 kWh/m2 to 7.96 kWh/m2. The performance of hybrid systems consisting of different rated power wind farms, photovoltaic (PV) areas, and storage capacities together with a diesel back-up are presented. The monthly average daily energy generated from the above hybrid system configuration has been presented. The deficit energy generated from the back-up diesel generator and the number of operational hours of the diesel system to meet a specific annual electrical energy demand of 702,358 kWh have also been presented.  相似文献   

6.
A computer simulation of solar powered absorption air conditioning systems is discussed. The results of simulations of various systems composed of conventional flat plate or evacuated tube collectors, wet or dry cooling towers, lithium bromide-water or aqua-ammonia working fluids and hot water, chilled water or refrigerant storage alternatives are obtained over a common operating cycle. Performance of the lithium bromide-water working fluid is shown to be superior to aqua-ammonia. Relative performance gains realized with the evacuated tube collector and relative performance losses associated with the dry cooling tower are presented. Chilled water storage is shown to be advantageous for an evacuated collector, dry cooling tower, lithium bromide-water system.  相似文献   

7.
Maximum power point tracking (MPPT) techniques are used to maintain photovoltaic modules operating points at the local maximum power points under non-uniform irradiance conditions (NUIC). For global maximum power point tracking (GMPPT) within an appropriate period, a hybrid artificial fish swarm algorithm (HAFSA) is proposed in this paper, which was developed using particle swarm optimization (PSO) to reformulate AFSA and improve its principal parameters. Simulation results show that under NUIC, compared with PSO and AFSA, the proposed algorithm has better performance with respect to convergence speed and convergence accuracy. Under NUIC, the average convergence times for 1000 simulation experiments completed with PSO, AFSA, and HAFSA are 0.4830 s, 0.4003 s and 0.3152 s respectively, and the average tracking time of the HAFSA algorithm is reduced by 34.74% and 21.26% compared with PSO and AFSA, respectively. The convergence times of the velocity inertia m relative constant and linear decrement method decreased by 35.48% and 8.19%, the convergence time of the Visual relative constant mode decreased by 10.16%, and the convergence time of the Step relative constant mode decreased by 17.88%. The proposed GMPPT algorithm is simulated in MATLAB, and the algorithm tracks GMPP with excellent efficiency and fast speed.  相似文献   

8.
A demonstrative study for the wind and solar hybrid power system   总被引:1,自引:0,他引:1  
In March 1995, a small scale wind and solar hybrid power system was installed at Ashikaga Institute of Technology. Until now, the authors have acquired the data of the output of the hybrid power plant along with wind speed, wind direction, and the solar radiation, in order to demonstrate a complementary relationship between solar energy and wind energy.After nine months operation of the system, the authors confirmed that there exists a complementary relationship between solar energy and wind energy. We also found, however, that the power output by wind does not have much prospect compared to that by solar cell especially in summer season in Ashikaga area.  相似文献   

9.
An advanced oxy-fuel hybrid power system (AHPS) is proposed in this paper. Solar thermal energy is used in the AHPS to produce saturated steam as the working fluid, and natural gas is internally combusted with pure oxygen. It is in configuration close to the zero emission Graz cycle. The thermodynamic characteristics at design conditions of the AHPS are analyzed using the advanced process simulator Aspen Plus. The corresponding exergy loss analyses are also carried out to gain understanding of the loss distribution. The results are given in detail. The solar thermal hybrid H2O turbine power generation system (STHS) is evaluated in this study as the reference. The comparison results demonstrate that the proposed cycle has notable advantages in thermodynamic performances. For example, the net fuel-to-electricity efficiency of the AHPS is 95.90%, which is 21.61 percentage points higher than that of the STHS. The exergy efficiency (based on the exergy input of fuel and solar thermal energy without radiation) of the AHPS is 55.88%, which is 2.13 percentage points higher than that of the STHS.  相似文献   

10.
新型户用风光互补供电系统   总被引:4,自引:0,他引:4  
简要描述了新型户用风光互补供电系统及其应用示范情况,以一个典型的实例分析了系统运行情况。经过1年的运行证明,该系统设计合理,能够满足边远地区目前的用电需求,具有推广应用价值。  相似文献   

11.
The combined utilization of renewables such as solar and wind energy is becoming increasingly attractive and is being widely used for substitution of oil-produced energy, and eventually to reduce air pollution. In the present investigation, hourly wind-speed and solar radiation measurements made at the solar radiation and meteorological monitoring station, Dhahran (26°32′N, 50°13′E), Saudi Arabia, have been analyzed to study the impact of key parameters such as photovoltaic (PV) array area, number of wind machines, and battery storage capacity on the operation of hybrid (wind + solar + diesel) energy conversion systems, while satisfying a specific annual load of 41,500 kWh. The monthly average wind speeds for Dhahran range from 4.1 to 6.4 m/s. The monthly average daily values of solar radiation for Dhahran range from 3.6 to 7.96 kWh/m2. Parametric analysis indicates that with two 10 kW wind machines together with three days of battery storage and photovoltaic deployment of 30 m2, the diesel back-up system has to provide about 23% of the load demand. However, with elimination of battery storage, about 48% of the load needs to be provided by diesel system.  相似文献   

12.
This research has established the process to transplant GaAs solar cells from GaAs substrate to Si substrate without degrading the conversion efficiency. The conversion efficiency of GaAs solar cell bonded to Si substrate using epitaxial lift-off process is almost the same as that grown on GaAs substrate and is superior to that grown on Si substrate by heteroepitaxy.  相似文献   

13.
An analysis of the radiation response of state-of-the-art InP/Si, InGaP, and dual junction (DJ) InGaP/GaAs space solar cells under both electron and proton irradiated is presented. The degradation data are modeled using the theory of displacement damage dose. For each technology, a characteristic curve which describes the cell degradation in any radiation environment is determined, and the characteristic curves are used to compare the radiation resistance of the different technologies on an absolute scale. The radiation data are used as input to a code which predicts the end-of-life (EOL) performance of a solar panel in earth orbit. The results show that in orbits outside the earth's radiation belts, the high-efficiency DJ InGaP/GaAs solar panels provide the highest EOL specific power. However, in orbits which pass through the belts, the radiation hard InP/Si panels provide the highest specific power by as much as 30%.  相似文献   

14.
杨征  吴玉庭  马重芳 《太阳能》2007,(12):16-19
根据国内外各种碟式太阳能热发电系统,总结出三种不同的吸热器传热方式,对它们进行了详细的阐述,给出了具体的应用实例,并对各种传热方式之间的特点进行了分析、比较。  相似文献   

15.
J.M. Pearce   《Energy》2009,34(11):1947-1954
The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five.  相似文献   

16.
Analytical and physical models for homojunction and heterojunction solar cells are developed, and the performances of solar cells made by the Si/Si homojunction and made by the increasingly important and popular AlGaAs/GaAs and Si/SiGe heterojunctions compared. The models developed, which include relevant device physics such as the effective surface recombination velocity at the high-low junction and band discontinuities associated with heterojunctions, correctly explain the solar cell characteristics experimentally observed. Our calculations suggest that the highest efficiencies attainable for AlGaAs/GaAs, Si/Si, and Si/SiGe cells, with optimized doping concentrations but without surface passivation and geometry optimization, are 21.25%, 17.8% and 13.5%, respectively, under 1 AM1.5 sun condition. For concentrator cell applications, the efficiencies improve to about 24.5%, 22.2%, and 22.0% for AlGaAs/GaAs, Si/Si, and Si/SiGe cells, respectively, under 100 AM1.5 suns. While the AlGaAs/GaAs cell possesses the highest efficiency among the three cells, the Si/Si and Si/SiGe cells can achieve a satisfactory conversion efficiency at high sun concentration (22% at 100 suns), making them attractive for concentrator cell applications because their processing is the same as or is compatible with existing silicon technology. Model predictions for two Si/Si and one AlGaAs/GaAs cells compare favorably with data reported in the literature.  相似文献   

17.
Solar panels exhibit non-linear current–voltage characteristics producing maximum power at only one particular operating point. The maximum power point changes with temperature and light intensity variations. Different methods have been introduced for tracking the maximum power point based on offline and online methods. In this paper a new method is presented to improve the performance of maximum power point tracking in solar panels. The proposed algorithm is a combination of two loops, set point calculation and fine tuning loops. First the set point loop approximates the maximum power using offline calculation of the open circuit voltage. The exact amount of the maximum power will, then, be tracked by the fine tuning loop which is based on perturbation and observation (P&O) method. The proposed method is simulated in Matlab/Simulink environment and experimentally verified using a laboratory prototype. In maximum power point tracking, the effects of frequency variation and disturbance amplitude on dynamic response and steady state performance are examined. Simulation and experimental results are compared with other methods and the effectiveness of the proposed method is evaluated.  相似文献   

18.
Isolated electrical power generating units can be used as an economically viable alternative to electrify remote villages where grid extension is not feasible. One of the options for building isolated power systems is by hybridizing renewable power sources like wind, solar, micro-hydro, etc. along with appropriate energy storage. A method to optimally size and to evaluate the cost of energy produced by a renewable hybrid system is proposed in this paper. The proposed method, which is based on the design space approach, can be used to determine the conditions for which hybridization of the system is cost effective. The simple and novel methodology, proposed in this paper, is based on the principles of process integration. It finds the minimum battery capacity when the availability and ratings of various renewable resources as well as load demand are known. The battery sizing methodology is used to determine the sizing curve and thereby the feasible design space for the entire system. Chance constrained programming approach is used to account for the stochastic nature of the renewable energy resources and to arrive at the design space. The optimal system configuration in the entire design space is selected based on the lowest cost of energy, subject to a specified reliability criterion. The effects of variation of the specified system reliability and the coefficient of correlation between renewable sources on the design space, as well as the optimum configuration are also studied in this paper. The proposed method is demonstrated by designing an isolated power system for an Indian village utilizing wind-solar photovoltaic-battery system.  相似文献   

19.
This paper presents a probabilistic model applied to a hybrid solar-wind power system (HSWPS), which is equipped with either a one-axis or a two-axis solar tracking system.Within the framework of a case study, the potential of the developed probabilistic approach is presented, and the effect of the solar tracking systems on the annual energy gain is discussed.Specifically, the impact of a tracking system on the probability density function (PDF) of the power produced by a photovoltaic system (PVS) is evaluated through the first four moments (mean, variance, skewness and kurtosis) of a PDF.Finally, to estimate the impact of a tracking system on HSWPS energy performance, a reliability analysis is performed using the energy index of reliability (EIR), which is directly related to energy expected not supplied (EENS), given different annual load scenarios.  相似文献   

20.
We present the modeling and optimization of a new hybrid solar thermoelectric (HSTE) system which uses a thermosyphon to passively transfer heat to a bottoming cycle for various applications. A parabolic trough mirror concentrates solar energy onto a selective surface coated thermoelectric to produce electrical power. Meanwhile, a thermosyphon adjacent to the back side of the thermoelectric maintains the temperature of the cold junction and carries the remaining thermal energy to a bottoming cycle. Bismuth telluride, lead telluride, and silicon germanium thermoelectrics were studied with copper–water, stainless steel–mercury, and nickel–liquid potassium thermosyphon-working fluid combinations. An energy-based model of the HSTE system with a thermal resistance network was developed to determine overall performance. In addition, the HSTE system efficiency was investigated for temperatures of 300–1200 K, solar concentrations of 1–100 suns, and different thermosyphon and thermoelectric materials with a geometry resembling an evacuated tube solar collector. Optimizations of the HSTE show ideal system efficiencies as high as 52.6% can be achieved at solar concentrations of 100 suns and bottoming cycle temperatures of 776 K. For solar concentrations less than 4 suns, systems with thermosyphon wall thermal conductivities as low as 1.2 W/mK have comparable efficiencies to that of high conductivity material thermosyphons, i.e. copper, which suggests that lower cost materials including glass can be used. This work provides guidelines for the design, as well as the optimization and selection of thermoelectric and thermosyphon components for future high performance HSTE systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号