首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of a forward (direct) osmosis (FO) process was investigated using a laboratory-scale unit to elucidate the effect of membrane structure and orientation on waterflux. Two types of RO membrane and a FO membrane were tested using ammonium bicarbonate, glucose, and fructose as the draw solution to extract water from a saline feed solution. The FO membrane was able to achieve higher water flux than the RO membranes under the same experimental conditions while maintaining high salt rejection of greater than 97%. Increasing operating temperature increased the water flux in FO process. To investigate the effect of membrane orientation on water flux, the FO membrane was tested normally (dense selective layer facing draw solution) and reversely (dense selective layer facing feed solution). Explanations on transport phenomenon in FO process were proposed which explain the observation that the FO membrane, when used in the normal orientation, performed better due to lesser internal concentration polarization. This study suggests that an ideal FO membrane should consist of a thin dense selective layer without any loose fabric support layer.  相似文献   

2.
Desalination of seawater using reverse osmosis (RO) technology is an important option available to water-scarce coastal regions. A major challenge to seawater reverse osmosis (SWRO) is membrane productivity decline due to fouling. Systematic studies in the area of SWRO fouling are lacking as compared to RO fouling by freshwater. The effect of the type of pretreatment employed ahead of the SWRO process has been recognized to be of critical importance in SWRO fouling. The objective of this study was to evaluate the effect of pretreatment on SWRO performance using bench scale experiments. The effect of different pretreatment strategies on SWRO flux decline was simulated using prefiltration of the SWRO feedwater using different filtration size ranges. The prefiltration size ranges used were selected to mimic the size fractions associated with different SWRO pretreatment processes. It was found that particulate matter greater than 1 microm (representing media filtration) caused most of the RO fouling. On the other hand, significant reduction in fouling was observed when membrane filtration was used (microfiltration represented by 0.1 microm prefiltration and ultrafiltration represented by 100 kDa prefiltration). There was no significant difference in flux decline between these two membrane filtration types. The lowest RO flux decline was observed when a tight ultrafiltration membrane (20 kDa) was used as prefiltration. The RO fouling observed was modeled using the gel layertheory, which could be used to satisfactorily describe fouling by different dissolved fractions of seawater. The observed SWRO fouling trends were confirmed using specially adapted attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of the fouled membrane surface.  相似文献   

3.
In this study, a low pressure nitrogen plasma (LPNP) activation was implemented to modify the surface characteristics of a commercial thin film composite (TFC) polyamide reverse osmosis (RO) membrane. The free energy of interaction (ΔGiwi) results showed that the hydrophobic nature of untreated TFC RO membrane became considerably hydrophilic with the effect of LPNP treatment. Among various plasma powers and exposure times tested, a general decreasing trend was observed for the water contact angle with increasing plasma duration, reaching a minimum of 13.2 ± 0.8° for 90 W at 15 min. A remarkable increase in water flux of the LPNP modified RO membrane was observed throughout the RO process, which promoted higher soluble solids content (SSC) values in the concentrated juice at the same period of time with the plain one. The higher SSC values achieved by the modified RO membrane enabled 30% time-saving during further osmotic distillation process.  相似文献   

4.
Perfluorooctane sulfonate (PFOS) and related substances are persistent, bioaccumulative, and toxic, and thus of substantial environmental concern. PFOS is an essential photolithographic chemical in the semiconductor industry with no substitutes yet identified. The industry seeks effective treatment technologies. The feasibility of using reverse osmosis (RO) membranes for treating semiconductor wastewater containing PFOS has been investigated. Commercial RO membranes were characterized in terms of permeability, salt rejection, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and membrane surface zeta potential (streaming potential measurements). Filtration tests were performed to determine the membrane flux and PFOS rejection. Over a wide range of feed concentrations (0.5 - 1500 ppm), the RO membranes generally rejected 99% or more of the PFOS. Rejection was better for tighter membranes, but was not affected by membrane zeta potential. Flux decreased with increasing PFOS concentration. While the flux reduction was severe for a loose RO membrane probably due to its higher initial flux, very stable flux was maintained for tighter membranes. At a very high feed concentration (about 500 ppm), all the membranes exhibited an identical stable flux. Isopropyl alcohol, present in some semiconductor wastewaters, had a detrimental effect on membrane flux. Where present it needs to be removed from the wastewater prior to using RO membranes.  相似文献   

5.
《Journal of dairy science》1988,71(3):604-612
Pasteurized whole milk was fractionated with a pilot-scale, plate and frame, ultrafiltration system to study membrane fouling and flux decline. Concentration factor was set at approximately 1.4× to simulate the first stage of a multistage UF system. Proteinaceous membrane foulant was characterized by SDS-PAGE. Distribution of proteins in the foulant was very different from distribution of proteins in milk. Whey proteins, α-lactalbumin and β-lactoglobulin, accounted for 95% of the proteinaceous membrane foulants. Very little casein was identified as membrane foulant.The approximate amount of protein in the membrane foulant was estimated to be .6 g/m2 of membrane area. Permeate flux studies indicated that flux decline is severe in the early stages of milk ultrafiltration and is associated with irreversible adsorption of protein on the membrane surface. A threefold difference between the water flux of clean membranes and fouled membranes was attributed to the adsorbed foulant. Identification and characterization of membrane foulants and the mechanism of their interaction with membrane surfaces should lead to the design of more efficient ultrafiltration systems for the dairy industry.  相似文献   

6.
Soluble microbial products (SMP), a significant component of effluent organic matter (EfOM), play an important role in membrane fouling and flux decline in wastewater reclamation/reuse applications. The SMP compounds of a microbial origin are derived during biological processes of wastewater treatment. They exhibit the characteristics of hydrophilic organic colloids and macromolecules. These high molecular weight compounds play an important role in creating high resistance of the membrane, leading to a reduction of permeate flux. The SMP fouling of RO, NF, and tight UF membranes is associated with formation of a cake/gel layer due to size (steric) exclusion. FTIR spectra of SMP- and EfOM-fouled membranes exhibited foulants' composition, consisting of polysaccharides, proteins, and/or aminosugar-like compounds. This finding reveals the important role of the SMP components as factors in membrane fouling and flux decline associated with EfOM source waters. Solids retention time (SRT) affects the characteristics and amounts of SMP, however, SRT did not affect flux decline trends of RO and NF membranes.  相似文献   

7.
High-quality water purification systems using reverse osmosis (RO) membrane separation have faced a major challenge related to biofilm formation on the membrane surface, or biofouling. To understand this issue, the biofilm formation characteristics of four bacterial isolates previously retrieved from an RO membrane treating potable water were investigated. Biofilm formation of all four isolates occurred to different extents in microtiter plates and could be related to one or more cell properties (hydrophobicity, surface charge, and motility). For Dermacoccus sp. strain RO12 and Microbacterium sp. strain RO18, bacterial adhesion was facilitated by cell surface hydrophobicity, and for Rhodopseudomonas sp. strain RO3, adhesion was assisted by its low surface charge. Sphingomonas sp. strain RO2 possessed both twitching and swarming motilities, which could be important in mediating surface colonization. Further, strains RO2, RO3, and RO12 did not exhibit swimming motility, suggesting that they could be transported to RO membrane surfaces by other mechanisms such as convective permeate flow. The biofilm formation of RO2 was further tested on different RO membranes made of cellulose acetate, polyamide, and thin film composite in continuous flow cell systems. The resultant RO2 biofilms were independent of membrane surface properties and this was probably related to the ex-opolysaccharides secreted bythe biofilm cells. These results suggested that RO2 could colonize RO membranes effectively and could be a potential fouling organism in RO membranes for freshwater purification.  相似文献   

8.
Protein fouling of nanofiltration (NF), reverse osmosis (RO), and ultrafiltration (UF) membranes by bovine serum albumin (BSA), lysozyme (LYS), and their mixture was investigated under cross-flow conditions. The effect of solution chemistry, membrane properties, and permeate flux level was systematically studied. When the solution pH was within the isoelectric points (IEPs) of the two proteins (i.e., pH 4.7-10.4), the mixed protein system experienced more severe flux decline compared to the respective single protein systems, which may be attributed to the electrostatic attraction between the negatively charged BSA and positively charged LYS molecules. Unlike a typical single protein system, membrane fouling by BSA-LYS mixture was only weakly dependent on solution pH within this pH range, and increased ionic strength was found to enhance the membrane flux as a result of the suppressed BSA-LYS electrostatic attraction. Membrane fouling was likely controlled by foulant-fouled-membrane interaction under severe fouling conditions (elevated flux level and unfavorable solution chemistry that promotes fouling), whereas it was likely dominated by foulant-clean-membrane interaction under mild fouling conditions. Compared to nonporous NF and RO membranes, the porous UF membrane was more susceptible to dramatic flux decline due to the increased risk of membrane pore plugging. This study reveals that membrane fouling by mixed macromolecules may behave very differently from that by typical single foulant system, especially when the inter-foulant-species interaction dominates over the intra-species interaction in the mixed foulant system.  相似文献   

9.
Membrane modification by concentration polarization (CP)-enhanced radical graft polymerization using a dilute aqueous solution of appropriate monomer was examined as a method for increasing rejection of boric acid by reverse osmosis (RO) membranes. On the basis of suggested physicochemical rationales a number of monomers were examined in order to determine those with the lowest affinity toward boric acid as compared to water. The improvement in the modified membrane performance was mainly attributed to sealing less selective areas ("defects") inherently present in the original low pressure RO (LPRO) membranes. However, the effect clearly differed for different monomers. Among the examined monomers glycidyl methacrylate (GMA) exhibited the lowest affinity and the largest improvement in removal of boric acid along with a moderate loss of permeability and slightly improved NaCl rejection. Modification of LPRO membrane thus resulted in a membrane with a permeability in the brackish water RO (BWRO) range but with removal of boric acid and salt superior to those reported for most commercial BWRO membranes.  相似文献   

10.
In the present study, a facile in situ approach for constructing tunable amphiphilic or hydrophilic antifouling membrane surfaces was demonstrated by exquisitely manipulating the microphase separation and surface segregation behavior of the tailor-made ternary amphiphilic block copolymers during the commonly utilized wet phase inversion membrane-formation process. Under dead-end filtration for oily wastewater treatment, the membrane with amphiphilic surface exhibited over 99.5% retention ratio of chemical oxygen demand (COD) without appreciable membrane fouling: the water permeation flux was slightly decreased during operation (total flux decline was 6.8%) and almost completely recovered to the initial value (flux recovery ratio was more than 99.0%) after simple hydraulic washing. While for the proteins-containing wastewater treatment, the membrane with hydrophilic surface exhibited about 52.6% COD retention ratio and superior antifouling performance: only 17.0% total flux decline and also more than 99.0% flux recovery ratio. Hopefully, the present approach can be developed as a competitive platform technology for the preparation of robust and versatile antifouling membrane, leading to the high process efficiency of wastewater treatments.  相似文献   

11.
Mushroom blanch water was concentrated by ultrafiltration (UF) and reverse osmosis (RO). UF prefiltration was essential in preventing severe fouling during the RO process. When the UF blanch water permeate was processed by RO, linear relationships between pressure and flux were observed at all concentrations tested. The blanch water was concentrated by UF/RO from 2% to 13% total solids at 60°C and 120 KPa/5000 KPa operating pressures with flux higher than 15 L/m2 hr. Maximum concentration obtained was approximately 20% total solids with 90% recovery of the nonvolatiles. Recoveries of some major volatiles were above 50%. Panelists could not differentiate the original from the reconstituted blanch waters in sensory evaluations.  相似文献   

12.
Microfiltration of bitter gourd (Momordica charantia) extract using hollow fiber membrane module was carried out in the present study. To identify the dominant fouling mechanism, flux decline behavior was examined using Field model. At lower transmembrane pressure, pore blocking mechanism was found to be more important, while cake filtration was dominant at higher pressure. Higher cross flow rate reduced filtration constant indicating slower rate of membrane fouling. Additionally, surface and particle size analyses were undertaken to validate the findings of modeling. Scanning electron microscope analysis clearly showed prevalence of pore blocking mechanism at lower transmembrane pressure drop, whereas cake filtration was dominant fouling mechanism at higher pressure. Fourier transform infrared spectroscopy analysis supported the role of cake layer as a secondary membrane retaining some amount of polyphenols. Analysis of flux decline ratio also confirmed that for transmembrane pressure of 104 kPa and beyond, cake layer became compact, and hence, increase in cross flow rate was unable to influence the improvement of permeate flux. The current study provides an insight into the fouling mechanism involved in scaling up of clarification of bitter gourd extract for successful processing of this medicinal herb.  相似文献   

13.
Fouling of membrane surfaces by particulate matter and large organic molecules is relatively common for pressure-driven membrane processes, namely, reverse osmosis (RO), nanofiltration (NF), and ultrafiltration (UF). Donnan membrane process (DMP) or Donnan Dialysis is driven by electrochemical potential gradient across a semipermeable ion exchange membrane. Theoretically, DMP is not susceptible to fouling by fine particulates and/or large organic molecules. According to information available in the open literature, however, DMP has not been tried to treat slurry or sludge with relatively high concentration of suspended solids or large organic molecules. This study presents the salient results of an extensive investigation pertaining to selective alum recovery from water treatment residuals (WTR) using DMP. Water treatment plants use alum, Al2(SO4)3 x 14H2O, as a coagulant, alum being finally converted and discharged as insoluble aluminum hydroxide along with natural organic matters (NOM), suspended solids, and other trace impurities. One commercial cation exchange membrane, namely Nafion 117 from DuPont Chemical Co., was used in the study for treating WTR obtained from two different water treatment plants in Pennsylvania. A series of laboratory tests confirmed that over 70% of alum is easily recoverable, and recovered alum is essentially free of particulate matter, NOM, and other trace metals. Most importantly, after repeated usage in the presence of high concentration of NOM and suspended solids, there was no noticeable decline in aluminum flux through the membrane, i.e., membrane surface fouling was practically absent. The DMP process involves coupled transport of Al3+ and H+ across the cation exchange membrane, and intramembrane transport was the rate-limiting step. Experimentally determined aluminum-hydrogen interdiffusion coefficient (D(Al-H)) values within the membrane were quite high (approximately 10(-6) cm2/s) under representative conditions, thus confirming high alum recovery rate. DMP was also found equally effective in recovering Fe(III) based coagulants from WTR.  相似文献   

14.
Commercial ultrafiltration (UF) and reverse osmosis (RO) membranes were used to concentrate the terpene, limonene, present in cold pressed oil centrifuge effluent and molasses evaporator condensate. UF membrane rejections were 78–97% for mixtures with initial limonene concentrations from 0.04–0.6%v/v. RO membrane rejection of limonene ranged from 87–99% for feed streams containing 0.06–0.23% limonene. Initial membrane flux rates for centrifuge effluents were in the range 10–100 kg/m2/hr. Evaporator condensate fluxes were higher, 25–400, while pure water rates ranged from 25 (RO) to 1000 kg/m2/hr (UF). Contact with limonene adversely affected membrane flux rates in decreasing order of severity: polysulfone > cellulose acetate > teflon-type.  相似文献   

15.
Adsorption of organic foulants on nanofiltration (NF) and reverse osmosis (RO) membrane surfaces strongly affects subsequent fouling behavior by modifying the membrane surface. In this study, impact on organic foulant adsorption of specific chemistries including those in commercial thin-film composite membranes was investigated using self-assembled monolayers with seven different ending chemical functionalities (-CH(3), -O-phenyl, -NH(2), ethylene-glycol, -COOH, -CONH(2), and -OH). Adsorption and cleaning of protein (bovine serum albumin) and polysaccharide (sodium alginate) model foulants in two solution conditions were measured using quartz crystal microbalance with dissipation monitoring, and were found to strongly depend on surface functionality. Alginate adsorption correlated with surface hydrophobicity as measured by water contact angle in air; however, adsorption of BSA on hydrophilic -COOH, -NH(2), and -CONH(2) surfaces was high and dominated by hydrogen bond formation and electrostatic attraction. Adsorption of both BSA and alginate was the fastest on -COOH, and adsorption on -NH(2) and -CONH(2) was difficult to remove by surfactant cleaning. BSA adsorption kinetics was shown to be markedly faster than that of alginate, suggesting its importance in the formation of the conditioning layer. Surface modification to render -OH or ethylene-glycol functionalities are expected to reduce membrane fouling.  相似文献   

16.
传统磷肥生产工艺产生的石膏固体废渣,因含大量有害杂质而未能有效回收利用.该文介绍了一种酸解磷矿提取硫酸钙晶须的新工艺流程,并对硫酸钙晶须产品的表面形貌、矿物成分和结晶水组成等性能进行分析.结果表明,酸解磷矿提取的硫酸钙晶须主要以二水硫酸钙的形式存在,其杂质含量少,纯度高;晶须主要呈针状结构,长度在5~100 μm,宽度在5~10 μm,长宽比在5∶1~20∶1:硫酸钙晶须用作造纸填料,具有白度高、磨耗低和溶解度高等特点.  相似文献   

17.
A systematic measurement of ions and 2H/1H, 7Li/6Li, 11B/10B, 18O/ 16O, and 87Sr/86Sr isotopes in feed-waters, permeates, and brines from commercial reverse osmosis (RO) desalination plants in Israel (Ashkelon, Eilat, and Nitzana) and Cyprus (Larnaca) reveals distinctive geochemical and isotopic fingerprints of fresh water generated from desalination of seawater (SWRO) and brackish water (BWRO). The degree of isotope fractionation during the passage of water and solutes through the RO membranes depends on the medium (solvent-water vs. solutes), chemical speciation of the solutes, their charge, and their mass difference. O, H, and Sr isotopes are not fractionated during the RO process. 7Li is preferentially rejected in low pH RO, and B isotope fractionation depends on the pH conditions. Under low pH conditions, B isotopes are not significantly fractionated, whereas at high pH, RO permeates are enriched by 20 per thousand in 11B due to selective rejection of borate ion and preferential permeation of 11B-enriched boric acid through the membrane. The specific geochemical and isotopic fingerprints of SWRO provide a unique tool for tracing "man-made" fresh water as an emerging recharge component of natural water resources.  相似文献   

18.
A limiting factor for the reuse and recycling of treated tannery wastewater for irrigation and other uses is the high salt content, which persists even after conventional treatment. Reverse osmosis (RO) membrane treatment has been shown to significantly reduce the salt contents of tannery effluents. However, the high organic content of tannery effluent leads to rapid scaling and biofouling of RO membranes with a consequent reduction in flux rates and performance. Membrane bioreactors (MBR) have been shown to be highly effective in the removal of organic pollutants and suspended solids from tannery effluent. This research investigated the use of a combined MBR and RO treatment process to treat tannery effluents to an acceptable level for irrigation purposes. The MBR was operated at 17-20 h retention time, at a F/M ratio of 0.52 kg COD x kg SS(-1) x day(-1) and a volumetric loading rate of 3.28 kg COD x m(-3) x day(-1). This treatment reduced the COD, BOD, and ammonia concentrations of the effluent by 90-100%. The MBR was shown to be an excellent pretreatment prior to RO technology, due to the high removal efficiency of organic compounds and suspended solids, with average concentrations of 344 mg x L(-1) COD and 20 mg x L(-1) BOD achieved in the permeate. RO treatment reduced the salt content of the MBR permeate by up to 97.1%. The results of the research demonstrated that the MBR system developed was appropriate for the treatment of tannery effluents and, in combination with the RO treatment, reduced the salt content to acceptable levels for irrigation. The MBR pretreatment reduced bio-fouling and scaling of subsequent RO treatment and improved the overall performance of the RO unit. It is believed that this is the first investigation of a combined MBR and RO treatment for tannery effluents. This research provided data for an outline design of a full-scale MBR and RO plant with a treatment capacity of 5000 m3 per day for mixed tannery effluents.  相似文献   

19.
CONCENTRATION of ORANGE JUICE BY REVERSE OSMOSIS   总被引:3,自引:0,他引:3  
Orange juice was concentrated by RO up to 50% hydraulic recovery with a polyamide membrane. Permeate fluxes and solute recoveries were determined at transmembrane pressures of 6.21 and 4.14 MPa. Pectinase treatment was required to prevent fouling and to allow Cleaning in Place procedures. Enzymatic treatment did not affect permeate flux or solute recoveries. Overall recovery of sugars, organic acids, and flavor-volatile components was approximately 93%.  相似文献   

20.
Microfiltration of reconsituted aqueous peel extract resulted in linear flux decline with time. Feed stream of reconstituted peel extract does not foul the membrane and flux decline is due solely to increased retentate viscosity. Cloud was concentrated up to 6.3% of washed dry matter, compared with 1.5% achieved by vacuum heat concentration. Permeate was at constant low viscosity during filtration experiment, free of insolubles, and crystal clear. Soluble sugars do not contribute to fouling gel layer; their permeation flux is constant, and is only a function of viscosity. Soluble high-molecular-weight polymers, such as pectins, cause membrane fouling and flux depression. Fluxes for soluble constituents, sucrose and pectin, were higher than those of reconstituted peel extract with similar viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号