首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pb (In1/2Nb1/2) O3‐Pb (Sc1/2Nb1/2) O3‐PbTiO3 (PIN‐PSN‐PT) ternary ceramics with compositions near morphotropic phase boundary (MPB) were fabricated by solid‐state‐sintering process. Dielectric and piezoelectric properties of xPIN‐yPSN‐zPT (x = 0.19, 0.23 and z = 0.365, 0.385) ceramics were investigated as a function of temperature, showing high Tr‐t and Tc on the order of 160 ~ 200°C and 280 ~ 290°C, respectively. The xPIN‐yPSN‐0.365PT (x = 0.19 and 0.23) ceramics do not depolarize at the temperature up to 200°C, showing a better thermal stability when compared to the state‐of‐the‐art relaxor‐PbTiO3 systems. A slight variation (<9%) of kp, kt, and k33 was observed in the temperature range of 25°C‐160°C for xPIN‐yPSN‐0.385PT (x = 0.19 and 0.23) ceramics. Rayleigh analysis was employed to quantify the contribution of domain wall motion to piezoelectric response, where the domain wall contribution was found to increase with composition approaching MPB for PIN‐PSN‐PT system.  相似文献   

2.
Particles in the core of optical fibers are widely studied to tailor or to improve optical properties. The analysis of nanoparticles embedded in silica‐based optical fiber allowed new observations of the evolution of amorphous particles during fiber drawing. Even at the nanoscale, competition between viscous stresses and surface tension on the particles induces elongation and even break‐up of particles during the process. Indeed, particles between 140 and 200 nm diameter inside the preform can break up in fragments with diameters down to 60 nm inside the drawn fiber. Break‐up of particles appears as a new “top‐down” strategy to produce small particles. These observations are promising for micro/nanostructured and multiphasic optical fibers.  相似文献   

3.
Fluorescent glass frits were prepared and used to synthesize phosphor‐in‐fluorescent glass composites (PiFGs) to realize stable white light emitting diodes with high color‐rendering properties. Commercial red, green, and blue phosphors were co‐sintered and red phosphors were partially replaced by Eu3+ in glass frits. Phosphor‐in‐glass composites were placed on UV‐light emitting diodes (UV‐LEDs) to generate white light. Pure white light with a luminous efficacy=58.4 lm/W, general color rendering index Ra=87 and special color rendering index for strong red R9=73 was realized with glass frits containing 7 mol% Eu2O3 and RGB ratio of 35:20:15. Luminous efficacy, Ra and R9 increased as red phosphors were replaced by red‐fluorescent glass frits.  相似文献   

4.
In this study, one‐pot hydrothermal synthesis of sheet‐like ZSM‐5 as a high‐performance catalyst for toluene disproportionation was carried out using binary surfactants. In the dual template, tetraethylammonium hydroxide was used to construct the microporous structure of ZSM‐5, and cationic surfactant (e.g., octadecyltrimethylammonium chloride (C18TMAC), hexadecyltrimethyl ammonium bromide (C16TMAB), and tetradecyltrimethylammonium bromide, (C14TMAB)) can change the growth habits of the ZSM‐5 crystals by hindering the regular stacking of zeolite layers from their longer hydrophobic chain. From the XRD pattern of the as‐synthesized samples which were hydrothermally treated for different time, it was found that a lamellar mesostructured intermediate gradually transformed into the sheet‐like ZSM‐5 during hydrothermal process. With a proper amount of cationic surfactant, the thickness of the sheet‐like ZSM‐5 could be controlled to less than 30 nm. Concerning the catalyst application, the toluene disproportionation performance over the sheet‐like ZSM‐5 is 1.5 times higher than that of the commercial ZSM‐5. The higher conversion is ascribed to the faster diffusion amount due to the sheet‐like ZSM‐5.  相似文献   

5.
Cation grain‐boundary diffusion in undoped and aliovalent‐doped Al2O3 is characterized using Cr2O3 as a chemical tracer. The compositional depth profiles measured by secondary ion mass spectrometry are fitted to the Whipple‐LeClaire model. The results indicate that cation grain‐boundary diffusivity is insensitive to MgO and SiO2 dopants between 1100°C and 1300°C.  相似文献   

6.
Near‐monodisperse, size‐controllable, poly(methyl methacrylate)‐pigment nanoparticle composites were produced using electrohydrodynamic atomization (EHDA). The geometric mean diameters of the composite particles were in the 0.91 to 1.90 µm‐diameter range with geometric standard deviations of approximately 1.05 to 1.12. Increasing the polymer volume fraction and liquid flow‐rate resulted in an increase in the diameter of the composite particles, which agreed well with droplet scaling relations for EHDA. The results here demonstrate that EHDA can be used for polymer‐nanoparticle‐composite production and as an alternative to conventional inkjet printing.

  相似文献   


7.
This study deals with the investigation of microphase‐separated morphology and phase behaviour in blends of polystyrene‐block‐polyisoprene with homopolystyrene and blends of polystyrene‐block‐poly(methyl methacrylate) with homopoly(methyl methacrylate) or homopolystyrene in the strong segregation regime using small‐angle X‐ray scattering and transmission electron microscopy as a function of composition, molecular weight of homopolymers, rM and temperature. Parameter rM = MH/MC (where MH is the molecular weight of homopolymer and MC that of the corresponding block copolymer) was selected to encompass behaviour of the chains denoted as a ‘wet brush’ (i.e. rM < 1). The relative domain spacing D/Do increases in the regime 0 < rM?1 with increasing concentration of homopolymer wP and increasing rM but depends on the specific implemented morphology. We tested a new approximate D/Do versus wP relation in the strong segregation regime using block copolymers of high molecular weights. It is shown that the parameters rM and χ3/2N determine the slope of the D/Do versus wP relation in the strong segregation regime and the new approximation generally matches the experimental data better than the approximations used so far. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
The kinetics of distribution of 27 5‐amino‐1‐aryl‐1H‐tetrazoles in the two‐phase system octan‐1‐ol/water were investigated UV/Vis‐spectrophotometrically at various temperatures. Studies on relationships between the obtained firstorder rate constants (logk1, logk2) and the hydrophobicity of the tetrazoles described by their partition coefficients (logP) show a nearly constant rate of transport from the aqueous to the organic phase (k1) above logP = 1,5 while the reverse rate (k2) strongly depends on hydrophobicity. In the whole logP range investigated the kinetic behaviour can be described by bilinear relationships between logk and logP corresponding to known kinetic models for distribution processes in two‐layer systems.  相似文献   

9.
The effective removal of hydroxyl groups (OH) is receiving the attention of scientists interested in developing high‐performance photonic glass. Previous approaches rely on stringent control of the various drying techniques which meet with limited success in silicate glass obtained by the sol‐gel method. Here, we present a novel in situ strategy to remove structural OH groups, based on the self‐limited nanocrystallization‐triggered local chemical reaction between OH and F? in the glassy phase. The experimental data revealed that a more than 100‐fold increase in the emission intensity can be realized. Moreover, the mechanism was discussed and it can be attributed to the effective removal of structural OH with especially strong binding energy. The results suggest an innovative avenue for the development of photonic glasses with efficient luminescence, excellent optical transmission, and improved reliability.  相似文献   

10.
Multilayer piezoelectric ceramic material with a composition of 0.1Pb(Ni1/3Nb2/3)O3‐0.35Pb(Zn1/3Nb2/3)O3‐0.15Pb(Mg1/3Nb2/3)O3‐0.1PbZrO3‐0.3PbTiO3‐4 mol% excess NiO (0.1PNN‐0.35PZN‐0.15PMN‐0.10PZ‐0.3PT‐0.04NiO) was fabricated by a roll‐to‐roll tape casting process and co‐fired with Ag/Pd electrode at low temperature of 950°C. Their dielectric, piezoelectric, and ferroelectric properties were evaluated. The effective piezoelectric coefficient d33 of the obtained multilayer piezoelectric material was 412 pm/V, while d33 for the ceramic pellet was 503 pm/V. Piezoelectric displacement measurements revealed small displacement hysteresis for the multilayer material. The combined characteristics of the multilayer piezoelectric material using the selected composition showed the potential for high power, high strain, and high force actuation applications. In addition, as the composition had a tetragonal phase, which substantially deviated from morphotropic phase boundary (MPB), the excellent properties may be more tolerant to stoichiometric fluctuation, which can allow larger processing and composition window as desired for scalable production.  相似文献   

11.
A new lead‐potassium‐free ceramic of (0.9‐x)NaNbO3‐0.1BaTiO3‐xNaSbO3 (NN‐BT‐xNS) was successfully prepared via a solid‐state reaction method. The microstructure, phase structure, dielectric, ferroelectric, and piezoelectric properties were investigated as a function of NS content. The substitution of NS for NN was found to dramatically change the grain morphology from cube‐like grains typical for alkaline niobate‐based ceramics to conventional sphere‐like grains especially for Pb‐based perovskite ceramics. A normal to relaxor ferroelectric phase transformation was accompanied by a tetragonal (T) to rhombohedral (R) phase transition. A composition‐temperature phase diagram demonstrated a vertical morphotropic phase boundary between T and R phases in the composition range of x=0.03‐0.04, where optimum electrical properties of d33=252 pC/N, kp=36%, Qm=168, =2063, and Tc=109°C were obtained in the x=0.035 ceramic sintered at 1260°C. Particularly, excellent temperature insensitivity of small‐signal piezoelectric properties suggested large application potentials in various actuators and sensors in comparison with other typical lead‐free materials.  相似文献   

12.
By employing carefully tailored tert‐butyl alcohol (TBA)‐based freeze‐casting parameters, a large amount of porosity (>70 vol%) and one or two‐dimensional pore channels created were produced into alkali niobate‐based (NKN) ceramics. The relationship between processing factors and microstructures has here been studied, in terms of (i) porosities controlled by adjusting the solid loading in the initial slurry and (ii) strategically attempted freezing direction to make varied pore channels, in which two freezing directions from the bottom or side of mold can produce unidirectional elongated and radially centrosymmetric microstructures, respectively. In addition to that, NKN/epoxy composites with 3‐1 or 3‐2 type polymer channels in the NKN matrix have been fabricated by infiltration of the polymer into the porous NKN hosts. The effect of the channel directions on the mechanical and piezoelectric properties of the composites was investigated for varied volume fractions of the active ceramic phase, mechanical loading, and the poling direction, leading to very high‐piezoelectric g33 coefficients at >60 mV·m/N in the composites with unique channel structures.  相似文献   

13.
Factors that control the competition between toluene dioxgenase‐catalysed arene cis‐dihydroxylation and dehydrogenase‐catalysed ketone reduction have been studied, using whole cells of Pseudomonas putida UV and three alkylaryl ketones. The triol metabolite, obtained from 2,2,2‐trifluoroacetophenone, has been used in the synthesis of single enantiomer chiral phenols and benzylic alcohols. Potential applications of the methylether derivatives of the chiral phenols and benzylic alcohols, as resolving agents, have been found. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
Compatibility of Bi‐based piezoelectric ceramic and copper electrodes is demonstrated by co‐firing 0.88Bi1/2Na1/2TiO3–0.08Bi1/2K1/2TiO3–0.04BaTiO3 (BNKBT88) with copper. A combination of Bi2O3, CuO, ZnO, Li2CO3, and B2O3 are used as additives to reduce firing temperature to 900°C with minimal effect on the electromechanical properties compared to sintering at 1150°C without additives. Co‐firing with copper electrodes requires controlled oxygen sintering at low temperature. The atmosphere is controlled using carbon dioxide and hydrogen gas to maintain an oxygen partial pressure of 6.1 × 10?8 atm, which is necessary for the coexistence of Cu metal and Bi2O3. The thermodynamic activity of bismuth oxide in BNKBT88 is calculated to be 0.38. BNKBT88 ceramics were successfully co‐fired with internal as well as surface Cu metal electrodes. The copper co‐fired ceramics were successfully polarized and the dielectric and piezoelectric properties are evaluated.  相似文献   

15.
A facile highly regioselective process is described for the formation of 4‐chloromethyl‐1,3‐oxazoles from 1,3‐oxazole N‐oxide/HCl salts. An explanation is presented for the high regioselectivity in deoxygenation‐chlorination using POCl3 with HCl salts compared to the corresponding free N‐oxides. The method is quite general and the products are isolated by direct precipitation in all cases studied.  相似文献   

16.
A simple and efficient trifluoromethanesulfonic acid‐catalyzed cycloisomerization of arylpropagylsulfonamide‐tethered 2,3‐epoxycyclohexan‐1‐ols is described. The cyclization proceeds via tandem semi‐pinacol rearrangement/alkyne‐aldehyde metathesis to afford spiropiperidines under mild reaction conditions.  相似文献   

17.
A novel liquid/solid two‐phase reaction has been discovered that enables destruction of a series of low‐molecular‐weight chloro‐/bromo‐hydrocarbons to carbon‐based materials. The solid phase is anhydrous potassium hydroxide and the liquid phase is a benzene or tetrahydrofuran solution of halide and contains a certain amount of tetrabutyl ammonium bromide (TBAB) as phase transfer catalyst. The structure of the carbon‐based materials have been characterized by elemental analysis, Fourier transform infrared (FT‐IR), FT‐Raman, and X‐ray photoelectron spectroscopies, and their morphologies have been examined by wide‐angle X‐ray diffraction and transmission electron microscopy. The results indicate that the products are amorphous nanoparticles and contain mainly elemental carbon. They consist of sp, sp2, and sp3 carbon atoms simultaneously and can be regarded as carbyne analogues. This work provides a convenient method for synthesizing new carbon‐based materials in relatively high yields. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1510–1515, 2000  相似文献   

18.
We investigated the effect of gadolinium doping (1‐5 at.%) on the magnetic and dielectric properties of Fe3O4 nanoparticles, synthesized by the chemical co‐precipitation technique, primarily to understand the onset of multifunctional properties such as ferroelectricity and magnetodielectric coupling. The substitution of larger Gd3+ ions at smaller Fe3+ octahedral sites in inverse spinel Fe3O4 has significantly influenced the morphology, average crystallite size, and more importantly, the magneto‐crystalline anisotropy and saturation magnetization. The magneto‐crystalline anisotropy and the saturation magnetization decreases substantially, however, significant increase in the average crystallite size is observed upon Gd doping. Furthermore, temperature‐dependent dielectric studies suggest that these nanoparticle systems exhibit relaxor ferroelectric behavior, with much pronounced ferroelectric polarization moment recorded for 5 at.% Gd doped Fe3O4 as compared to its undoped counterpart.  相似文献   

19.
20.
A comparison of minimum time heating cycles (MTHCs) was conducted for binder removal from ceramic green bodies for two mass transfer mechanisms: diffusion and gas permeability. The MTHCs were determined by combining approximate analytic solutions to the governing reaction‐diffusion and reaction‐gas permeability equations with a variational calculus algorithm containing a constraint on pressure buildup within the green body. Both the temperature‐time profile and duration of the MTHCs were sensitive to the operative transport process as well as to a number of model parameters including the pressure constraint, the total furnace pressure, the reaction kinetics, the gas permeability, and the diffusivity as described by the free volume theory. Strategies were identified which are most effective for decreasing the cycle time for each mass transfer mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号