首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydration of CaO powders by reaction with water vapor has been studied in isothermal and isobaric conditions. Experimental tests were performed within the temperature range of 70 °C–420 °C and with a water vapor pressure from 5 to 160 hPa by means of a thermogravimetric device. Two powders, exhibiting slight differences in their physical properties, were studied. However, for one of the powders and under some temperature and pressure conditions, the reaction is not complete. The difference of behavior between both CaO powders was interpreted by considering the effect of the morphological properties on the mechanism of growth of Ca(OH)2.  相似文献   

2.
Phospholipids are integral constituents of the milk fat globule membranes and they play a central role in infants’ immune and inflammatory responses. A methodology employing liquid chromatography coupled with evaporative light scattering detector has been optimized and validated to quantify the major phospholipids classes in human milk. Phospholipids were extracted using chloroform and methanol and separated on C18 column. Repeatability, intermediate reproducibility, and recovery values were calculated and a large sample set of human milk analyzed. In human milk, phospholipid classes were quantified at concentrations of 0.6 mg/100 g for phosphatidylinositol; 4.2 mg/100 g for phosphatidylethanolamine, 0.4 mg/100 g for phosphatidylserine, 2.8 mg/100 g for phosphatidylcholine, and 4.6 mg/100 g for sphingomyelin. Their relative standard deviation of repeatability and intermediate reproducibility values ranging between 0.8 and 13.4 % and between 2.4 and 25.7 %, respectively. The recovery values ranged between 67 and 112 %. Finally, the validated method was used to quantify phospholipid classes in human milk collected from 50 volunteers 4 weeks postpartum providing absolute content of these lipids in a relatively large cohort. The average content of total phospholipids was 23.8 mg/100 g that corresponds to an estimated mean intake of 140 mg phospholipids/day in a 4-week old infant when exclusively breast-fed.  相似文献   

3.
The removal of water from hardened cement paste for analysis or to arrest ongoing hydration has been reported to affect the composition of hydrated phases and microstructure. The effect that arresting the hydration of hardened cement paste by replacing the pore water with acetone before drying, and by removing the water by freeze, vacuum and oven drying has on the hardened cement paste has been investigated. Two pastes were studied, a cemented iron hydroxide floc where a high proportion of ordinary Portland cement (OPC) had been replaced by pulverised fuel ash, and a pure hydrated OPC. The results showed that none of the water removal techniques caused any major deterioration in the composition and microstructure of the hardened cement pastes studied, but the pores appeared better preserved after arresting hydration using acetone quenching. Freeze drying appeared to cause more cracking of the microstructure than the other water removal techniques.  相似文献   

4.
Due to environmental and health aspects, aqueous ceramic slurries are preferred to traditional organic solvent systems in tape casting. An important obstacle associated with the high surface energy of water is poor wetting of aqueous ceramic slurries on polymeric tape carriers. Therefore, we measured the contact angles of an aqueous epoxy-based ceramic slurry on polyethylene terephtalate (PET), polypropylene (PP), polymethyl methacrylate (PMMA), and aluminium-coated polyethylene terephtalate (PET-Al) films and investigated approaches to improving their wetting. We evaluated the effect of plasma treatment of the tape carrier surface on the wetting behaviour and compared it with the effect of adding non-ionic amphiphilic surfactants to the ceramic slurry. The treatment of the tape carrier surface by low-temperature plasma substantially improved the wetting behaviour of aqueous ceramic slurry. The lowest contact angle of 31° was obtained on the PET film. Although the addition of non-ionic surfactants improved both the wetting behaviour of the slurry and the detachment of the polymeric carrier from the ceramic tape even better than the plasma treatment of the carrier surface did, the plasma-treated carriers still present a useful alternative to the surfactants. In the case of the plasma-treated PET carrier the surfactants could be fully eliminated and potential drawbacks related to the use of surfactants could be prevented.  相似文献   

5.
The behaviour of two novel cement-in-polymer (c/p) dispersions, namely cement-in-poly(vinyl acetate) and cement-in-poly(vinyl alcohol) upon exposure to water at room temperature was investigated by a combination of various NMR methods. The swelling, cracking, and the water ingress were monitored non-destructively using 1H single point imaging. The hydration of the cement matrix was investigated using 29Si NMR whilst 13C CPMAS NMR spectra allowed the quantification of the kinetics of the hydrolysis reaction of poly(vinyl acetate) into poly(vinyl alcohol). The polymer controls the rate of water ingress and swelling which in turn determines the behaviour of the c/p dispersions upon exposure to water. For the cement-in-poly(vinyl alcohol), the rates of water ingress and swelling are much faster than the hydration of the clinker whilst for the cement-in-poly(vinyl acetate) the slow rates of the two processes allow the formation of a cementious matrix which assures the stability of the sample.  相似文献   

6.
7.
We evaluate experimentally the effect of carbonation on the hydro-mechanical properties of Portland cement. Samples were carbonated at 90 °C and 28 MPa under wet supercritical CO2. Two types of carbonation features were achieved, either the samples were homogeneously carbonated or they displayed sharp carbonation fronts. Using a tri-axial apparatus, the static elastic moduli and the mechanical strength were measured at in-situ pressure conditions (28 MPa) and showed a degradation of the mechanical properties of the samples where a carbonation front prevailed. Water and gas permeabilities were measured and showed that the samples with a carbonation front exhibit a stress sensitive permeability. P and S elastic wave velocities were measured to evaluate dynamic (ultrasonic range, 1 MHz) elastic moduli. The use of an effective medium theory approach enabled us to characterize the density and distribution of cracks within the samples. This approach outlines that the samples which developed a carbonation front were damaged.  相似文献   

8.
Cement-based grout plays a significant role in the design and performance of nuclear waste repositories: used correctly, it can enhance their safety. However, the high water-to-binder ratios, which are required to meet the desired workability and injection ability at early age, lead to high porosity that may affect the durability of this material and undermine its long-term geochemical performance.In this paper, a new methodology is presented in order to help the process of mix design which best meets the compromise between these two conflicting requirements. It involves the combined use of the computer programs CEMHYD3D for the generation of digital-image-based microstructures and CrunchFlow, for the reactive transport calculations affecting the materials so simulated. This approach is exemplified with two grout types, namely, the so-called Standard mix 5/5, used in the upper parts of the structure, and the “low-pH” P308B, to be injected at higher depths.The results of the digital reconstruction of the mineralogical composition of the hardened paste are entirely logical, as the microstructures display high degrees of hydration, large porosities and low or nil contents of aluminium compounds.Diffusion of solutes in the pore solution was considered to be the dominant transport process. A single scenario was studied for both mix designs and their performances were compared. The reactive transport model adequately reproduces the process of decalcification of the C-S-H and the precipitation of calcite, which is corroborated by empirical observations. It was found that the evolution of the deterioration process is sensitive to the chemical composition of groundwater, its effects being more severe when grout is set under continuous exposure to poorly mineralized groundwater. Results obtained appear to indicate that a correct conceptualization of the problem was accomplished and support the assumption that, in absence of more reliable empirical data, it might constitute a useful tool to estimate the durability of cement-based structures.  相似文献   

9.
The specific anionic charge density of polycarboxylate superplasticizers can be determined experimentally by titration with a cationic polyelectrolyte. In this study, the anionic charge densities of several polycarboxylates based on methacrylate ester chemistry were measured in aqueous solution at pH 7 and 12.6, resp., and in cement pore solution. The anionic charge of the polycarboxylates increases with increasing pH value as a result of deprotonation of the carboxylate groups in the polymer backbone. Addition of Ca2+ ions generally causes a decrease of the anionic charge density. The reduction in anionic charge varies and depends on the architecture of the polycarboxylate. The effect results from the binding of calcium ions by the carboxylate groups, both through complexation and counter-ion condensation. Consequently, the effective anionic charge density of polycarboxylates in cement pore solution can differ significantly from the charge density which is calculated based on the chemical composition. Generally the -COO functionality may coordinate Ca2+ as a monodentate or bidentate ligand. The type of coordination depends on the steric accessibility of the carboxyl group. In PC molecules possessing high side chain density, the -COO group is shielded by the side chains and coordinates as bidentate ligand, producing a neutral Ca2+-PC complex. Accordingly, this type of PC shows almost no anionic charge anymore in cement pore solution. In PCs possessing high amount of -COO, Ca2+ is coordinated monodentate, resulting in an anionic complex. Consequently, this type of PC shows significant anionic character in pore solution. Its adsorption behaviour is determined by a gain in enthalpy which derives from the electrostatic attraction between the PC and the surface of cement. This way, by utilizing the relatively simple method of charge titration, it is possible to assess the electrostatic attraction which, besides entropy gains, is the driving force behind the adsorption of polycarboxylates on the cement surface and thus determines their effectiveness as dispersing agent. The findings are generally applicable to other anionic admixtures used in cement.  相似文献   

10.
In this article we shall describe our quest and ultimate success in furthering our understanding of the action of superplasticizers on the rheology of cement and concrete. By specifically producing superplasticizers with varied architectures, we have been able to show the important structural features of the macromolecules that lead to a successful superplasticizer or water reducing agent. Both polycarboxylate and lignosulfonate polymers have been investigated. Using both non-reactive model MgO powders, three different types of cement blends, the adsorption behaviour and the effect on the rheological properties of these two important superplasticizer families have been used to further develop a conceptual model for superplasticizer — cement behaviour. This paper will deal mainly with the conceptual model, the materials and methods used to asses the polymer adsorption behaviour and rheological properties of the systems studied. We shall briefly describe the adsorption of the polymers onto the different surfaces and their influence on surface charge and rheology and the influence of the various ionic species found in cement pore solutions that may influence polymer-cement affinity. The key factors are shown to be the effective adsorbed polymer thickness and the induced surface charge which can be influenced by the polymer architecture, the pore solution composition and the initial particle surface charge.  相似文献   

11.
The effects of bleed water reabsorption and subsequent early age expansion on observed autogenous deformation are investigated in this research. Bleeding was induced by varying superplasticizer and shrinkage-reducing admixture dosages and by increasing the water-to-cement ratio. This research revealed that significant early age expansion occurs with increasing chemical admixture dosages and higher water-to-cement ratios, as expected, due to increasing bleeding of those samples. When samples were rotated, negligible early age expansion was observed. Thus, bleed water reabsorption is shown to be the primary mechanism causing initial expansion in sealed autogenous deformation samples. Thermal dilation and ettringite growth appear to have a minimal influence on the observed expansion. Rotating the samples during setting eliminates the potential for bleed water reabsorption and is recommended for all autogenous deformation testing.  相似文献   

12.
The water resistance of plaster of Paris is limited due to the high solubility of calcium sulphate hemihydrate. In order to improve this resistance, calcium sulphoaluminate clinker was added to plaster at different contents: 30, 50, and 70%. Mortars were cast using these new binders and subjected to the Soxhlet extraction test. The presence of calcium sulphoaluminate clinker considerably reduced the quantity of sulphate extracted per day and after 5 days: from 78.9% to 89.1%. The analysis of microstructure showed the stability of ettringite during the leaching test and the refinement of the porosity.  相似文献   

13.
An experimental study is carried out on concretes composed of three different types of aggregates: semi crushed silico-calcareous, crushed calcareous and rolled siliceous. For each aggregate type, two water/cement ratios (W/C), 0.6 and 0.3 are studied. Aggregates and concrete specimens were subjected to 300, 600 and 750 °C heating–cooling cycles. We analyse the evolution of thermal, physical and mechanical properties of concrete in terms of behaviour and physical characteristic evolutions of aggregates with temperature. The study of thermal behaviour of aggregates showed the importance of initial moisture state for the flints. The crystallisation and microstructure of quartz play an important role in the thermal stability of siliceous aggregates. The residual mechanical behaviour of concrete varies depending on the aggregate and the influence of aggregates is also dependent on paste composition. This study allowed to better understand the influence of chemical and mineralogical characteristics of aggregates on the thermomechanical behaviour of concrete.  相似文献   

14.
Experimental measurements and numerical analysis were carried out to study the effect of the cell geometry in resistivity determinations. The resistance of the diaphragm in cement paste and mortar samples was determined using impedance spectroscopy. Numerical simulations were performed using finite element method (FEM). Several surface ratios (geometrical diaphragm surface to electrolyte-diaphragm surface, S/S′) were investigated. The thickness of the diaphragm, L, was also considered.The experimental results show a significant decrease of the apparent resistivity when the ratio S/S′ increases. Similar trend was observed for increasing values of the L/S′ ratio. The numerical simulations can explain the experimental findings and also allow to formulate a general rule for the design of migration and diffusion experiments in porous materials.  相似文献   

15.
This article focus on modelling of ageing effects on crack-bridging behaviour of AR-glass multifilament yarns embedded in cement-based matrix. In the first step, age-dependent changes in the crack-bridging behaviour of AR-glass multifilament yarns were investigated at the meso and micro levels. Two cementitious matrices were considered where the binder contained Portland cement clinker and ground granulated blast furnace slag cement, respectively. Mechanical characteristics of the bond between matrix and multifilament yarns after accelerated ageing were measured by means of double-sided yarn pullout tests. In these tests the multifilament yarns bridged a single crack in the matrix arising in a notched area of the specimen. Losses in performance with increasing age differed widely depending on matrix material composition. The essential cause of such losses was discovered to be the microscopic densification of the fibre-to-matrix interface. This led to increased bond intensity and restricted slip-ability of the filaments. Subsequently, these micro-structural phenomena were related to the mesoscopic material behaviour by means of a phenomenological bond model. This cross-linkage model describes the crack-bridging effect of the entire multifilament yarn at the single filament level. According to the model, each filament possesses a specific deformation length depending on its position in the cross-section of the yarn. This deformation length depends on bond characteristics between single filament and cementitious matrix, which vary with age. Characteristic values of the model were computed from load-crack width curves obtained from the yarn pullout tests. The changes in the microstructure were represented by the characteristic values of the model.  相似文献   

16.
《Ceramics International》2017,43(14):11265-11273
An approach to the preparation of customized hydroxyapatite scaffolds for bone regeneration based on subtractive manufacturing has been developed. The developed method is intended as a simple alternative to rapid prototyping based on additive manufacturing methods. The method for the preparation of customized scaffolds consists in computer numerical controlled (CNC) milling of porous hydroxyapatite foam. The machinable foam for customized scaffolds was prepared by direct foaming of a colloidal hydroxyapatite suspension and the foam structure was consolidated by the gelcasting method. The optimal foam after sintering reached a high porosity of 83.3% and the cellular-like structure contained spherical pores with an average diameter of 613 µm, which were connected through windows with an average diameter of 161 µm. The compressive strength of the sintered foam reached an average value of 2 MPa. CNC milling was tested at different stages of the production cycle of the porous foam and after the reinforcing of the foam by impregnation. The best results were obtained by milling the foam presintered at 1100 °C. The milling process was demonstrated and scaffold examples were successfully manufactured.  相似文献   

17.
Environmental pollution arising from industrial implants and urban factors is constantly increasing, causing aesthetical and durability concerns to urban structures exposed to the atmosphere. This work is aimed at the study of a system which could take advantage of functionalized building materials in order to improve the quality of urban surfaces, and possibly of the environment itself: TiO2-containing photoactive materials represent an appealing way to create self-cleaning surfaces, thus limiting maintenance costs, and to promote the degradation of polluting agents. Several mortars containing anatase TiO2, added as suspension or as powder, were characterized: among the photocatalytic mortars, the use of a combined additive (both powder and suspension) improved the material response. The best photoefficiency was exhibited by a mortar containing TiO2 as surface covering; nevertheless, the adhesion problems shown by the surface layer open the way for future widening of investigations focused on the optimization of layer durability.  相似文献   

18.
In spite of many studies, knowledge about the fundamental factors influencing adhesion between addition curing silicones and aluminum substrates is very limited. The aim of this publication is to evaluate the influence of the formulation and the surface state of the adherend on bond strength. For this purpose, the composition of an addition curing silicone was systematically varied and the effects on both material and bond properties were examined. Additionally, the influence of surface aging at different humidities (0% r. h., 34% r. h., 82% r. h.) of acid etch pretreated aluminum substrates was considered. It is shown that the mechanical properties of the silicone material can be easily adjusted over a wide range by changing the formulation. Although high tensile strengths up to 9.2 MPa for the silicone material can be achieved, lap-shear strengths remain moderate at approximately 3.5 MPa. Predominant adhesive failures show the limited adhesive strength of the basic formulation without additives. Basic ingredients of addition curing silicones without additives are able to reach a certain adhesive strength. However, this strength was quite limited and adhesion promoters are required to further improve adhesion. The humidity at which the pretreated substrates are stored has an overall minor influence on bond strength. Surprisingly, bond strength tends to increase with the storage time of aluminum substrates despite lower surface energies in comparison to freshly pretreated substrates. All in all, the storage conditions of aluminum had a rather small influence on adhesion, whereas the composition of the silicone adhesive strongly influences bond strength.  相似文献   

19.
This study demonstrates the synergistic effect of some particular combination of fibers that can provide significantly better spalling protection of concrete in a fire than single fiber by themselves at the same fiber content level. Various combinations of polypropylene, polyvinyl alcohol, cellulose and nylon fibers were investigated. Fire tests were conducted in accordance with ISO-834. The combination of nylon (9 mm length) and polypropylene (19 mm length) fibers found to provide the most optimum results. By combining these two fibers, the same level of spalling protection was achieved by three times less fiber content than the single type of 0.10% polypropylene fiber commonly prescribed. A “fiber effectiveness parameter” is proposed which is a function of total number of fibers per unit volume and length of fiber. This parameter is useful in providing quantitative explanations of various fiber additions and their spalling results in fire.  相似文献   

20.
The assessment of the durability of cement-based materials, which could be employed in underground structures for nuclear waste disposal, requires accounting for deterioration factors, such as chemical attacks and damage, and for the interactions between these phenomena. The objective of the present paper consists in investigating the long-term behaviour of cementitious materials by simulating their response to chemical and mechanical solicitations. In a companion paper (Stora et al., submitted to Cem. Concr. Res. 2008), the implementation of a multi-scale homogenization model into an integration platform has allowed for evaluating the evolution of the mineral composition, diffusive and elastic properties inside a concrete material subjected to leaching. To complete this previous work, an orthotropic micromechanical damage model is presently developed and incorporated in this numerical platform to estimate the mechanical and diffusive properties of damaged cement-based materials. Simulations of the chemo-mechanical behaviour of leached cementitious materials are performed with the tool thus obtained and compared with available experiments. The numerical results are insightful about the interactions between damage and chemical deteriorations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号