首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Assembly of double-stranded DNA viruses and bacteriophages involves the polymerization of several hundred molecules of coat protein, directed by an internal scaffolding protein. A 163-amino acid carboxyl-terminal fragment of the 303-amino acid bacteriophage P22 scaffolding protein was cloned, overexpressed, and purified. This fragment is active in procapsid assembly reactions in vitro. The circular dichroism spectrum of the fragment, as well as the 1D-NMR and 15N-1H HSQC spectra of the uniformly-labeled protein, indicate that stable secondary structure elements are present. Determination of the three dimensional packing of these elements into the folded scaffolding protein fragment is underway. Structure-based drug design targeted at structural proteins required for viral assembly may have potential as a therapeutic strategy.  相似文献   

2.
Initiation of Escherichia coli DNA synthesis primed by homologous recombination is believed to require the phiX174-type primosome, a mobile priming apparatus assembled without the initiator protein DnaA. We show that this primosome plays an essential role in bacteriophage Mu DNA replication by transposition. Upon promoting transfer of Mu ends to target DNA, the Mu transpososome undergoes transition to a pre-replisome that permits initiation of DNA synthesis only in the presence of primosome assembly proteins PriA, DnaT, DnaB and DnaC. These assembly proteins promote the engagement of primase and DNA polymerase III holoenzyme, initiating semi-discontinuous replication preferentially at the Mu left end. The results indicate that these proteins play a crucial role in promoting replisome assembly on a recombination intermediate.  相似文献   

3.
A capsomeric structure sedimenting with an S value of 108 in sucrose gradients was isolated from Escherichia coli infected with bacteriophage phi X174. The 108S material contained viral proteins F, G, H, and D, and the relative amounts of these proteins in the 108S material were similar to those in the infectious 132S particle, which has previously been described as a possible intermediate in the assembly of 114S phage particles. Electron micrographs indicated that the size and shape of the 108S material resemble those of the 132S particle. The 108S material contained no DNA, and its formation occurred independently of DNA synthesis. The 108S material accumulated in infected cells when viral DNA replication was prevented either by mutation in phage genes A or C or by removal of thymidine from a culture infected with wild-type phage or with a lysis gene E mutant. Upon restoration of thymidine to cells infected with the lysis gene E mutant and then starved of thymidine, the accumulated 108S material was converted to 132S particles and to 114S phage particles, implying that the 108S material is a precursor of phage particles. A model that proposes possible functions for the products of phi X174 genes A, B, C, D, F, and G during viral replication and phage maturation is described.  相似文献   

4.
Active biological containment systems are based on the controlled expression of killing genes. These systems are of interest for the Pseudomonadaceae because of the potential applications of these microbes as bioremediation agents and biopesticides. The physiological effects that lead to cell death upon the induction of expression of two different heterologous killing genes in nonpathogenic Pseudomonas putida KT2440 derivatives have been analyzed. P. putida CMC4 and CMC12 carry in their chromosomes a fusion of the PA1-04/03 promoter to the Escherichia coli gef gene and the phiX174 lysis gene E, respectively. Expression of the killing genes is controlled by the LacI protein, whose expression is initiated from the XylS-dependent Pm promoter. Under induced conditions, killing of P. putida CMC12 cells mediated by phiX174 lysis protein E was faster than that observed for P. putida CMC4, for which the Gef protein was the killing agent. In both cases, cell death occurred as a result of impaired respiration, altered membrane permeability, and the release of some cytoplasmic contents to the extracellular medium.  相似文献   

5.
Heterotrimeric G proteins have been implicated in the regulation of intracellular protein transport, but their mechanism of action remains unclear. In vivo, secretion of chromogranin B, tagged with the green fluorescent protein, was inhibited by the addition of a general activator of trimeric G proteins (AlF4-) to stably transfected Vero cells and resulted in an accumulation of the tagged protein in the Golgi apparatus. In an in vitro assay that reconstitutes intra-Golgi protein transport, we find that a membrane-bound and AlF4--sensitive factor is involved in the fusion reaction. To determine whether this effect is mediated by a heterotrimeric G protein localized to COPI-coated transport vesicles, we determined the presence of G proteins on these vesicles and found that they were segregated relative to the donor membranes. Because G proteins do not have an obvious sorting, retention, or retrieval signal, we considered the possibility that other interactions might be responsible for this segregation. In agreement with this, we found that trimeric G proteins from isolated Golgi membranes were partially insoluble in Triton X-100. Identification of the proteins that interact with the heterotrimeric G proteins in the Golgi-derived detergent-insoluble complex might help to reveal the regulation of protein secretion mediated by heterotrimeric G proteins.  相似文献   

6.
The phiX-type primosome was discovered during the resolution and reconstitution in vitro of the complementary strand DNA replication step of the phiX174 viral life cycle. This multienzyme bidirectional helicase-primase complex can provide the DNA unwinding and Okazaki fragment-priming functions at the replication fork and has been implicated in cellular DNA replication, repair, and recombination. We have used gel mobility shift assays and enhanced chemiluminescence Western analysis to isolate and identify the pathway of primosome assembly at a primosome assembly site (PAS) on a 300-nucleotide-long single-stranded DNA fragment. The first three steps do not require ATP and are as follows: (i) PriA recognition and binding to the PAS, (ii) stabilization of the PriA-PAS complex by the addition of PriB, and (iii) formation of a PriA-PriB-DnaT-PAS complex. Subsequent formation of the preprimosome involves the ATP-dependent transfer of DnaB from a DnaB-DnaC complex to the PriA-PriB-DnaT-PAS complex. The final preprimosomal complex contains PriA, PriB, DnaT, and DnaB but not DnaC. A transient interaction between the preprimosome and DnaG generates the five-protein primosome. As described in an accompanying article (Ng, J. Y., and Marians, K. J. (1996) J. Biol. Chem. 271, 15649-15655), when assembled on intact phiX174 phage DNA, the primosome also contains PriC.  相似文献   

7.
11S seed storage proteins are synthesized as precursors that are cleaved post-translationally in storage vacuoles by an asparaginyl endopeptidase. To study the specificity of the reaction catalyzed by this asparaginyl endopeptidase, we prepared a series of octapeptides and mutant legumin B and G4 glycinin subunits. These contained amino acid mutations in the region surrounding the cleavage site. The endopeptidase had an absolute specificity for Asn on the N-terminal side of the severed peptide bond but exhibited little specificity for amino acids on the C-terminal side. The ability of unmodified and modified subunits to assemble into hexamers after post-translational modification was evaluated. Cleavage of subunits in trimers is required for hexamer assembly in vitro. Products from a mutant gene encoding a noncleavable prolegumin subunit (LeBDeltaN281) accumulated as trimers in seed of transgenic tobacco, but products from the unmodified prolegumin B gene accumulated as hexamers. Therefore, the asparaginyl endopeptidase is required for hexamer assembly.  相似文献   

8.
9.
The 5,577 nucleotide long sequence of bacteriophage G4 DNA has been determined using the 'plus and minus' and chain termination methods of DNA sequencing. This sequence has been compared with that of the closely related bacteriophage phiX174 (refs 1, 55). In the coding regions there is an average of 33.1% nucleotide sequence differences between the two genomes, but the distribution of these changes is not random and the sequence of some genes is more conserved than others. There is less sequence similarity between the untranslated intergenic regions of G4 and phiX174, but despite this the sequences of the J/F, F/G and H/A untranslated spaces in both genomes have similar sized hairpin loops, which may be related to their function.  相似文献   

10.
Flock house virus (FHV) is a small icosahedral insect virus with a bipartite, messenger-sense RNA genome. Its T=3 icosahedral capsid is initially assembled from 180 subunits of a single type of coat protein, capsid precursor protein alpha (407 amino acids). Following assembly, the precursor particles undergo a maturation step in which the alpha subunits autocatalytically cleave between Asn363 and Ala364. This cleavage generates mature coat proteins beta (363 residues) and gamma (44 residues) and is required for acquisition of virion infectivity. The X-ray structure of mature FHV shows that gamma peptides located at the fivefold axes of the virion form a pentameric helical bundle, and it has been suggested that this bundle plays a role in release of viral RNA during FHV uncoating. To provide experimental support for this hypothesis, we generated mutant coat proteins that carried deletions in the gamma region of precursor protein alpha. Surprisingly, we found that these mutations interfered with specific recognition and packaging of viral RNA during assembly. The resulting particles contained large amounts of cellular RNAs and varying amounts of the viral RNAs. Single-site amino acid substitution mutants showed that three phenylalanines located at positions 402, 405, and 407 of coat precursor protein alpha were critically important for specific recognition of the FHV genome. Thus, in addition to its hypothesized role in uncoating and RNA delivery, the C-terminal region of coat protein alpha plays a significant role in recognition of FHV RNA during assembly. A possible link between these two functions is discussed.  相似文献   

11.
After budding, the human immunodeficiency virus (HIV) must 'mature' into an infectious viral particle. Viral maturation requires proteolytic processing of the Gag polyprotein at the matrix-capsid junction, which liberates the capsid (CA) domain to condense from the spherical protein coat of the immature virus into the conical core of the mature virus. We propose that upon proteolysis, the amino-terminal end of the capsid refolds into a beta-hairpin/helix structure that is stabilized by formation of a salt bridge between the processed amino-terminus (Pro1) and a highly conserved aspartate residue (Asp51). The refolded amino-terminus then creates a new CA-CA interface that is essential for assembling the condensed conical core. Consistent with this model, we found that recombinant capsid proteins with as few as four matrix residues fused to their amino-termini formed spheres in vitro, but that removing these residues refolded the capsid amino-terminus and redirected protein assembly from spheres to cylinders. Moreover, point mutations throughout the putative CA-CA interface blocked capsid assembly in vitro, core assembly in vivo and viral infectivity. Disruption of the conserved amino-terminal capsid salt bridge also abolished the infectivity of Moloney murine leukemia viral particles, suggesting that lenti- and oncoviruses mature via analogous pathways.  相似文献   

12.
Disruption of the vif gene of human immunodeficiency virus (HIV) type 1 affects virus infectivity to various degrees, depending on the T-cell line used. We have concentrated our studies on true phenotypic Vif- mutant particles produced from CEMx174 or H9 cells. In a single round of infection, Vif- virus is approximately 25 (from CEMx174 cells) to 100 (from H9 cells) times less infectious than wild-type virus produced from these cells or than the Vif- mutant produced from HeLa cells. Vif- virions recovered from restrictive cells, but not from permissive cells, are abnormal both in terms of morphology and viral protein content. Notably, they contain much reduced quantities of envelope proteins and altered quantities of Gag and Pol proteins. Although wild-type and Vif- virions from restrictive cells contain similar quantities of viral RNA, no viral DNA synthesis was detectable after acute infection of target cells with phenotypically Vif- virions. To examine the possible role of Vif in viral entry, attempts were made to rescue the Vif- defect in H9 cells by pseudotyping Vif+ and Vif- HIV particles with amphotropic murine leukemia virus envelope. Vif- particles produced in the presence of HIV envelope could not be propagated when pseudotyped. In contrast, when only the murine leukemia virus envelope was present, significant propagation of Vif- HIV particles could be detected. These results demonstrate that Vif is required for proper assembly of the viral particle and for efficient HIV Env-mediated infection of target cells.  相似文献   

13.
Encoded in the genomes of all alphaviruses is a hydrophobic polypeptide of 55 amino acids, which is post-translationally modified with 4 covalently bound palmitic acids. This protein, noted as 6K, associates with membranes and is transported along with the two virus transmembranal glycoproteins to the site of virus assembly at the infected cell's plasma membrane. Previous studies showed that mutations in the 6K protein led to the slow release of aberrant, multi-cored infectious virions. In this paper, we report that an in-frame insertion of 45 nucleotides into an internal site of the 6K gene of Sindbis virus produced single-cored infectious particles at about 5% the yield of wild-type virus when the mutant was grown on avian, mammalian, and insect cells. Although the 15 amino acids were inserted at position 29 of the 55-amino-acid 6K protein, the mutation interfered with the cotranslational proteolytic processing that cleaves the 6K at its amino terminus from the Sindbis virus p62 glycoprotein and at its carboxyl terminus from the E1 glycoprotein. As a result, the amounts of normal p62 and E1 proteins were only half that made in cells infected with wild-type virus. In addition, the post-translational proteolytic conversion of p62 to E2 occurred at 10% the rate of wild-type proteins and the extensive fatty acylation normally detected on wild-type 6K protein was not found on the altered 6K protein. None of the mutated 6K protein was detected in virions, which were morphologically indistinguishable from wild-type virus. The mutant 6K virions also were similar to wild type in their rate of attachment, uncoating, and formation of an early nonstructural virus protein in avian cells. When compared with the wild-type virus, 6K29-infected cells exhibited a decreased rate of host-cell protein synthesis shut off. However, the rates of virus capsid synthesis were the same, indicating that capsid protein, per se, is not involved in shut off of host-cell protein synthesis. In complementation studies, this mutant exhibited a trans-dominant phenotype. These data provide clues about the topology of 6K protein in the membrane and its function in virus maturation.  相似文献   

14.
The ordered copolymerization of viral proteins to form the herpes simplex virus (HSV) capsid occurs within the nucleus of the infected cell and is a complex process involving the products of at least six viral genes. In common with capsid assembly in double-stranded DNA bacteriophages, HSV capsid assembly proceeds via the assembly of an outer capsid shell around an interior scaffold. This capsid intermediate matures through loss of the scaffold and packaging of the viral genomic DNA. The interior of the HSV capsid intermediate contains the viral protease and assembly protein which compose the scaffold. Proteolytic processing of these proteins is essential for and accompanies capsid maturation. The assembly protein (ICP35) is the primary component of the scaffold, and previous studies have demonstrated it to be capable of intermolecular association with itself and with the major capsid protein, VP5. We have defined structural elements within ICP35 which are responsible for intermolecular self-association and for interaction with VP5. Yeast (Saccharomyces cerevisiae) two-hybrid assays and far-Western studies with purified recombinant ICP35 mapped a core self-association domain between Ser165 and His219. Site-directed mutations in this domain implicate a putative coiled coil in ICP35 self-association. This coiled-coil motif is highly conserved within the assembly proteins of other alpha herpesviruses. In the two-hybrid assay the core self-association domain was sufficient to mediate stable self-association only in the presence of additional structural elements in either N- or C-terminal flanking regions. These regions also contain conserved sequences which exhibit a high propensity for alpha helicity and may contribute to self-association by forming additional short coiled coils. Our data supports a model in which ICP35 molecules have an extended conformation and associate in parallel orientation through homomeric coiled-coil interactions. In additional two-hybrid experiments we evaluated ICP35 mutants for association with VP5. We discovered that in addition to the C-terminal 25 amino acids of ICP35, previously shown to be required for VP5 binding, an additional upstream region was required. This region is between Ser165 and His234 and contains the core self-association domain. Site-directed mutations and construction of chimeric molecules in which the self-association domain of ICP35 was replaced by the GCN4 leucine zipper indicated that this region contributes to VP5 binding through mediating self-association of ICP35 and not through direct binding interactions. Our results suggest that self-association of ICP35 strongly promotes stable association with VP5 in vivo and are consistent with capsid formation proceeding via formation of stable subassemblies of ICP35 and VP5 which subsequently assemble into capsid intermediates in the nucleus.  相似文献   

15.
Bone morphogenetic proteins have been proposed as candidate genes for fibrodysplasia ossificans progressiva. Bone morphogenetic protein 4 is overexpressed in cells derived from these patients. The bone morphogenetic protein 4 genes from a family showing autosomal dominant inheritance of fibrodysplasia ossificans progressiva have been screened for mutations by single strand conformation polymorphism analysis and deoxyribonucleic acid sequencing. The exon coding regions and splice junctions of the bone morphogenetic protein 4 gene have been examined for polymorphisms in all five family members. However, no mutation was discovered in these messenger ribonucleic acid and protein coding regions or in the splice junctions of affected or unaffected family members. In addition, approximately 1.5 kb of upstream flanking sequences also were examined. Neutral polymorphisms were identified in the upstream flanking region of the bone morphogenetic protein 4 gene. Although this study has not identified any mutations in the bone morphogenetic protein 4 gene that are correlated with the occurrence of fibrodysplasia ossificans progressiva, the bone morphogenetic protein 4 gene cannot yet be excluded from consideration as the genetic cause of this disorder because a mutation could be present in unexamined regulatory sequences of this gene.  相似文献   

16.
17.
The core domain of human immunodeficiency virus type 1 (HIV-1) integrase (IN) contains a D,D(35)E motif, named for the phylogenetically conserved glutamic acid and aspartic acid residues and the invariant 35 amino acid spacing between the second and third acidic residues. Each acidic residue of the D,D(35)E motif is independently essential for the 3'-processing and strand transfer activities of purified HIV-1 IN protein. Using a replication-defective viral genome with a hygromycin selectable marker, we recently reported that a mutation at any of the three residues of the D,D(35)E motif produces a 10(3)- to 10(4)-fold reduction in infectious titer compared with virus encoding wild-type IN (A. D. Leavitt et al., J. Virol. 70:721-728. 1996). The infectious titer, as measured by the number of hygromycin-resistant colonies formed following infection of cells in culture, was less than a few hundred colonies per microg of p24. To understand the mechanism by which the mutant virions conferred hygromycin resistance, we characterized the integrated viral DNA in cells infected with virus encoding mutations at each of the three residues of the D,D(35)E motif. We found the integrated viral DNA to be colinear with the incoming viral genome. DNA sequencing of the junctions between integrated viral DNA and host DNA showed that (i) the characteristic 5-bp direct repeat of host DNA flanking the HIV-1 provirus was not maintained, (ii) integration often produced a deletion of host DNA, (iii) integration sometimes occurred without the viral DNA first undergoing 3'-processing, (iv) integration sites showed a strong bias for a G residue immediately adjacent to the conserved viral CA dinucleotide, and (v) mutations at each of the residues of the D,D(35)E motif produced essentially identical phenotypes. We conclude that mutations at any of the three acidic residues of the conserved D,D(35)E motif so severely impair IN activity that most, if not all, integration events by virus encoding such mutations are not IN mediated. IN-independent provirus formation may have implications for anti-IN therapeutic agents that target the IN active site.  相似文献   

18.
The transmembrane (TM) domains of viral fusion proteins are required for fusion, but their precise role is unknown. G protein, the fusion protein of vesicular stomatitis virus, was previously shown to lose syncytia-forming ability if six residues (GLIIGL) were deleted from its TM domain. The 20-residue TM domain of wild-type (TM20) G protein was thus changed into a TM domain of 14 residues (TM14). To assess possible sequence specificity for this loss of function, the two Gly residues in TM20 were replaced with either Ala or Leu. Both mutations resulted in complete loss of fusion activity, as measured by fusion-dependent reporter gene transfer. Single substitutions decreased activity by about half. TM14 was weakly active (15%) but reintroduction of a Gly residue into TM14 by a single Ile --> Gly substitution increased activity to 80%. All mutants retained normal hemifusion activity, i.e., lipid mixing between the outer leaflets of the reacting membranes. Thus, at least one TM Gly residue is required for a late step in fusion mediated by G protein. Gly residues were significantly (2.6-fold; P = 0.004) more abundant in the TM domains of viral fusion proteins than in those of nonfusion proteins and were distributed differently within the TM domain. Thus, Gly residues in the TM domain of other viral fusion proteins may also prove to be important for fusion activity.  相似文献   

19.
X-linked agammaglobulinemia (XLA) is a primary immunodeficiency disease caused by mutations of Bruton tyrosine kinase (Btk); Btk plays an essential role in the development of mature B cells. However, small numbers of B cells ("leaky B cells") are present in the peripheral blood of most XLA patients. In this study, we analyzed the function of these leaky B cells obtained from XLA patients. Enough numbers of B cells were available for analysis from five of nine XLA patients originally screened. Sequence analysis revealed missense mutations of Btk in four of the five XLA patients. No mutation was found in the coding region of Btk in one patient. Western blotting and/or flow cytometric analysis failed to detect Btk protein in all five patients. B cells isolated from peripheral blood of these XLA patients were CD5-, CD20+, CD19+, and CD21-. If stimulated with anti-CD40 and IL-4, XLA B cells proliferated normally and produced significant amounts of IgE. Anti-CD40 stimulation of XLA B cells resulted in normal expression of CD23. In addition, three of the five XLA patients studied were immunized with bacteriophage phiX174 and produced low but detectable levels of antiphage-specific Ab. Similarly, X-linked immunodeficiency mice, which carry a missense mutation in Btk, produced substantial amounts of antiphage Ab. These results indicate that CD40 signaling is intact in B cells lacking demonstrable Btk, and that leaky B cells in XLA patients can proliferate, undergo isotype switching, and differentiate into specific Ab-producing cells.  相似文献   

20.
A microdialysis flow cell has been developed for time-resolved Raman spectroscopy of biological macromolecules and their assemblies. The flow cell permits collection of Raman spectra concurrent with the efflux of small solute molecules into a solution of macromolecules and facilitates real-time spectroscopic detection of structural transitions induced by the effluent. Additionally, the flow cell is well suited to the investigation of hydrogen-isotope exchange phenomena that can be exploited as dynamic probes of viral protein folding and solvent accessibility along the assembly pathway. Here, we describe the application of the Raman dynamic probe to the maturation of the icosahedral capsid of bacteriophage P22, a double-stranded DNA virus. The P22 virion is constructed from a capsid precursor (procapsid) consisting of 420 coat subunits (gp5) in an outer shell and a few hundred scaffolding subunits (gp8) within. Capsid maturation involves expulsion of scaffolding subunits coupled with shell expansion at the time of DNA packaging. Raman static and dynamic probes reveal that the scaffolding subunit is highly alpha-helical and highly thermolabile, and lacks a typical hydrophobic core. When bound within the procapsid, the alpha-helical fold of gp8 is thermostabilized; however, this stabilization confers no apparent protection against peptide NH-->ND exchange. A molten globule model is proposed for the native scaffolding subunit that functions in procapsid assembly. Accompanying capsid expansion, a small conformational change (alpha-helix-->beta-strand) is also observed in the coat subunit. Domain movement mediated by hinge bending is proposed as the mechanism of capsid expansion. On the basis of these results, a molecular model is proposed for assembly of the P22 procapsid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号