首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B cell deficient animals obtained by various strategies of gene targeting were used to study the B cell development and examine the role of different immune compartments in the immune response to microbes. Study of muMT, JHD, lambda 5T and JHT models of B cell deficiency, was essential in order to understand the role of pre-B cell receptor in B cell development, allelic exclusion and variable gene rearrangement regulation. In the immune response to influenza virus, a protective role of T cells in a total absence of B cell compartment, was revealed by studying the JHD -/- model. Further, it was established that a T cell compartment is sufficient to mediate the recovery from influenza infection. Examination of immune response in muMT and JHD models of definitive B cell deficiency to various blood stage Plasmodia species, showed that whereas B cells are not required for recovery from infection with P. chabaudi adami, P. vinckei petteri and P. chabaudi chabaudi (CB), B cell compartment is important in the later stages of infection with P. chabaudi chabaudi (AS). Studies carried out in muMT model suggested a possible role for T gamma delta subpopulation in the immune response to blood stage malaria parasite. B cell deficiency models are valuable for understanding the normal and pathological immune response. Studies carried out in muMT model indicated that T cell responses are not significantly affected in the absence of B cells. These data can neither rule out a role for B cells in T cell priming, nor in triggering an effective T cell help for humoral response. Study of double homozygous mice deficient for B cells and FAS or IL-2 gene, pinpointed the role of B cells in pathogenesis of lupus-like nephritis and vasculitis from lpr mouse and in hemolytic anemia from IL-2 -/- mouse model, respectively.  相似文献   

2.
A prominent switch of CD4+ T cells from Th1 to Th2 type response occurs in mice infected with the non-lethal malaria parasite Plasmodium chabaudi chabaudi AS around the time of peak parasitemia. This is reflected by a decrease in IFN-gamma- and an increase in IL-4-producing cells. The peak occurs approximately 9-10 days after infection and is accompanied by anemia. The mechanism behind the switch in Th cell response is poorly understood. We here report on the production of IL-4 from a non-T cell source during P. chabaudi infection in BALB/c mice. Flow cytometric analysis of spleen and peripheral blood leukocytes (PBL) showed a dramatic increase in the percentage of non-B non-T (NBNT) cells 9-23 days after P. chabaudi infection with peak values by day 15 (approximately 30 % of splenocytes and approximately 55 % of PBL being NBNT cells). The expansion of NBNT cells correlated closely with the appearance of a cell type secreting IL-4 and IL-6 following stimulation with IL-3 and/or cross-linking of FcgammaR. Compared to cells from uninfected animals, NBNT cells from P. chabaudi-infected mice were shown to be hyper-responsive to IL-3. The levels of the hematopoietic cytokine IL-3 were elevated in supernatants from unstimulated spleen cell cultures as well as in serum at the same time points at which NBNT cell-derived IL-4 and IL-6 were detected from spleen cultures and PBL. Thus, IL-3-responsive IL-4-producing NBNT cells may provide cytokines supporting the switch from Th1 to a Th2 response which is important for the final clearance of the parasite in P. chabaudi malaria.  相似文献   

3.
Mice transgenic for a TCR that recognizes peptide110-120 of hemagglutinin of PR8 influenza virus in the context of MHC class II I-Ed molecules express the transgenes in both CD4+ and CD8+ T cells. We have found that these TCR-hemagglutinin (TCR-HA) transgenic mice display a significantly increased resistance to the primary infection with PR8 virus compared with the wild-type mice. The TCR-HA transgenic mice mounted significant MHC type II and enhanced MHC type I-restricted cytotoxicity as well as increased cytokine responses in both spleen and lungs after infection with PR8 virus. In contrast, the primary humoral response against PR8 virus was not significantly different from that of the wild-type mice. In vivo depletion and adoptive cell transfer experiments demonstrated that both CD4+ and CD8+ TCR-HA+ T cell subsets were required for the complete clearance of pulmonary virus following infection with a dose that is 100% lethal in wild-type mice. Whereas CD4+ TCR-HA+ T cells were necessary for effective activation and local recruitment of CD8+ T cells, CD8+ TCR-HA+ T cells showed a Th1-biased pattern and MHC type II-restricted cytotoxicity. However, in the absence of in vivo expression of MHC type I molecules on the infected cells, the protection conferred by the TCR-HA+ T cells was impaired, indicating that the enhanced MHC class I-restricted cytotoxicity due to TCR-HA+ CD4+ Th cells was a critical element for clearance of the pulmonary virus by the transgenic mice.  相似文献   

4.
Previous studies have shown that immunization of mice with the paraflagellar rod proteins (PAR) of Trypanosoma cruzi induces an immune response capable of protecting mice against an otherwise lethal challenge with this parasite. Herein, we define immunologic responses that do or do not play a critical role in PAR-mediated protection. Firstly, PAR-immunized Ab-deficient (muMT) strain mice survived an otherwise lethal T. cruzi challenge, indicating that a B cell response is not required for PAR-induced immunity. However, beta2m -/- mice, which are severely deficient in MHC class I and TCR alphabeta+ CD8+ CD4- T cells, did not survive challenge infection following PAR immunization, indicating that MHC class I/CD8+ T cell function is necessary for protection induced by PAR immunization. Surprisingly, PAR-immunized mice depleted of CD4+ T cells survived a T. cruzi challenge for >84 days postinfection while maintaining a parasitemia that is generally thought to be lethal (i.e., >10(6) trypomastigotes/ml), thus associating CD4+ T cell function with the process of parasite clearance. Consistent with this association, CD4+ T cells from PAR-immunized mice released INF-gamma and stimulated T. cruzi-infected macrophages to release nitric oxide. The importance of IFN-gamma in PAR-induced protective immunity is further indicated by the observation that PAR-immunized INF-gamma knockout mice developed an extremely high parasitemia and did not survive a challenge infection. Thus, while Ab-mediated immune mechanisms are not required for protection induced by PAR immunization, T cell responses are necessary for both elimination of bloodstream parasites and survival.  相似文献   

5.
To define the role of T cells and B cells in resistance to vesicular stomatitis virus (VSV) infection, knockout mice with different specific immune defects on an identical background were infected i.v. and the outcome of infection was compared; in this way a more complete picture of the relative importance of various host defence mechanisms could be obtained. Compared to T and B cell-deficient SCID mice which all succumbed from encephalitis within 5-9 days of infection, T cell-deficient nude mice generally lived longer, but within a period of approximately 1 month after challenge all died. In contrast, B cell-deficient mice were highly susceptible even to low doses of virus and mortality could be prevented by transfer of naive B cells prior to challenge as well as by immune serum given after challenge. Analysis of MHC class I- and class II-deficient mice revealed that CD8+ T cells could exert some antiviral activity, but CD4+ T cells sufficed for survival and were required for optimal resistance. Consistent with this it was found that in nude mice a lethal outcome could be prevented by transfer of CD8-depleted cells from B cell-deficient mice. Thus our results clearly demonstrate that while antibodies are pivotal for survival in the early phase of VSV infection, T cells are required for long-term survival, with CD4+ T cells being more effective in controlling this infection than CD8+ T cells.  相似文献   

6.
Experimental autoimmune myasthenia gravis (EAMG) is an animal model for human myasthenia gravis (MG). Autoantibody-induced functional loss of nicotinic acetylcholine receptor (AChR) at the postsynaptic membrane is an important pathogenic feature of both MG and EAMG. To evaluate the extent at which the humoral immune response against AChR operates in the pathogenesis of EAMG, we immunized B cell knockout (muMT) and wild-type C57BL/6 mice with AChR and complete Freund's adjuvant. The ability of AChR-primed lymph node cells to proliferate and secrete IFN-gamma in response to AChR and its dominant peptide alpha146-162 were intact in muMT mice as in wild-type mice. Similar amounts of mRNA for IFN-gamma, IL-4 and IL-10 in AChR-reactive lymph node cells were detected in muMT and wild-type mice. However, muMT mice had no detectable anti-AChR antibodies and remained completely free from clinical EAMG. We conclude that B cells are critically required for the genesis of clinical EAMG, but not for AChR-specific T cell priming.  相似文献   

7.
Levels of IL-4, IL-5, TNF-alpha, and IFN-gamma were quantitated in the intestinal (afferent) and efferent thoracic duct lymph of rats during the course (0 to 289 h) of an infection with Trichinella spiralis. Intestinal lymph was collected by cannulating thoracic ducts of mesenteric lymphadenectomized animals. These studies showed that cytokines typical of a Th2 type (IL-4 and IL-5) and a Th1 type (IFN-gamma) were simultaneously detected in the intestinal lymph during the first 8 days after infection. Worm expulsion (day 11 to 12) was associated with increased levels of IL-4 and IL-5 in the intestinal lymph. IL-5 levels rose as early as 15 to 20 h and remained elevated throughout the infection. IL-4 activity appeared in intestinal lymph 60 h after infection and reached peak levels during worm expulsion. Despite the predominantly Th2 nature of cytokine response, IFN-gamma levels showed several cycles of high and low production during the course of infection. A comparison of cytokine levels between intestinal and efferent lymph values showed no significant differences in IL-4 or IL-5 levels suggesting no contribution by the mesenteric node to efferent lymph. However, IFN-gamma and TNF-alpha levels were lower in efferent lymph compared with intestinal lymph suggesting mesenteric node consumption. Adoptive transfer experiments showed that protective CD4+CD45RC- cells primed the gut for a more rapid TH2-type response that was faster than in a primary infection. In contrast, adoptive transfer of CD4+CD45RC+ cells primed the gut for a more rapid Th1-type(IFN-gamma) response. These studies demonstrate a novel method for measuring real-time changes in cytokine levels in the gut during the course of an active infection.  相似文献   

8.
FcR gamma-deficient mice were used to examine the role of Fc gamma receptors in the induction of peripheral tolerance to human gamma-globulin (HGG). FcR gamma-deficient mice injected with HGG in adjuvant demonstrated a CD4+ T cell response to in vitro challenge with HGG, as assayed by proliferation, cytokine secretion, and Ag-specific help for B cell Ab production. In vitro kinetics of Ag-specific proliferation were similar in both conventional and knockout mice. Peripheral tolerance could be established in these mice with a single dose of deaggregated protein, despite the lack of functional Fc gammaRI, the high affinity receptor for monomeric IgG. Establishment of unresponsiveness was observed at both the T and B cell levels. T cell tolerance was manifested in the reduction of T cell helper function and Ag-induced release of Th1- and Th2-like cytokines, as well as decreased proliferation to Ag-specific stimulation. B cell tolerance was demonstrated in knockout and normal mice by failure to detect HGG-specific Ab production using an immunization protocol for Ab production that bypasses the need for Ag-specific T cells. These results demonstrate that induction of tolerance in CD4+ cells to HGG does not require transduction of a signal through Fc gammaRI. Furthermore, the ability to induce tolerance to HGG in B cells in Fc gammaRII-deficient mice suggests that down-regulation of Ag-specific B cells through Fc gammaRII is not the mechanism by which B cell tolerance is induced. However, Fc gammaRII plays a role in regulating the immune response since the Ab response to immunogenic HGG in Fc gammaRII-deficient mice is markedly enhanced.  相似文献   

9.
The role of T lymphocytes in susceptibility to Pseudomonas aeruginosa corneal infection was studied in inbred C57Bl/6 (B6) beta2-microglobulin+/+ (beta2m+/+) and beta2m-/- knockout (KO) mice on a B6 genetic background. The corneas of both B6 and KO mice perforated by 7 days postinfection (p.i.). Histopathology revealed a similar inflammatory response characterized by an infiltration of polymorphonuclear neutrophilic leukocytes by 24 h p.i. in both groups of mice. CD4+ and CD8+ (latter absent in KO) T cells were present in cornea by 3 days p.i., and by 5 days, IL-2R-positive cells were positively immunostained. Corneas of B6 beta2m+/+ mice depleted of CD4+ T cells and infected with P. aeruginosa did not perforate at 7 days p.i. vs mice depleted of CD8+ T cells or treated with an irrelevant mAb. Neutralization of IFN-gamma before infecting B6 mice prevented corneal perforation and was associated with a lower delayed-type hypersensitivity than in B6 mice similarly treated with an irrelevant mAb. These data provide evidence that a CD4+ T cell (Th1)-dominated response following P. aeruginosa corneal infection is associated with genetic susceptibility and corneal perforation in inbred B6 mice.  相似文献   

10.
To investigate the role and effect of IL-2 in the genesis of Th1 and Th2 responses to Candida albicans in vivo, we assessed the levels of IL-2 production and the Ag-specific proliferative response in mice with healing or nonhealing infection and the effects of IL-2 neutralization or administration on the course and outcome of infection and on the type of CD4+ Th immunity elicited. High levels of IL-2 production and Ag-specific proliferation in vitro correlated with disease progression in susceptible mice. In contrast, resolution of infection in resistant mice was accompanied by the induction of Ag-specific hyporesponsiveness and impaired IL-2 production. Progression of infection did not occur in susceptible mice treated with anti-IL-2 or anti-IL-2R mAbs; conversely, disease resolution was prevented in resistant mice treated with IL-2. CD4+ Th1 cell responses were present in BALB/c mice rendered resistant by IL-2 neutralization and CD4+ Th2 responses in mice rendered susceptible by IL-2 treatment. The presence of IL-2 restored Ag-specific responsiveness in vitro and correlated in vivo with the expansion of CD4+ MEL-149(low) cells capable of producing IL-2 and IL-4 both in vitro and in vivo as observed in adult thymectomized mice. These results indicate that production of IL-2 early in infection correlates with the induction of IL-4-producing CD4+ Th2 cells, while a transient loss of T cell responsiveness, such as IL-2 production, appears to be required for CD4+ Th1 occurrence in mice with candidiasis.  相似文献   

11.
This study demonstrates that neutralizing-antibody-producing B cells, CD4(+) T cells, and interferons (IFNs) are of key importance in virus control both in adoptive immunotherapy of persistent infection and in the late phase of acute infection with the WE strain of lymphocytic choriomeningitis virus (LCMV). We report the following results. (i) Clearance of LCMV-WE from C57BL/6 carrier mice by adoptive transfer of memory spleen cells requires B cells and CD4(+) T cells but not necessarily CD8(+) T cells. (ii) At the doses examined, CD8(+) T cells contribute to the initial reduction of viral titers but are alone not sufficient to clear the virus because they are exhausted. (iii) In the presence of functional IFN-gamma, virus clearance correlates well with the generation of neutralizing antibodies in the treated carrier mice. (iv) In the absence of receptors for IFN-gamma, virus clearance is not achieved. (v) Adoptive immunotherapy of mice persistently infected with a distinct virus isolate, LCMV-Armstrong, revealed only low levels of neutralizing antibodies; in this case, CD8(+) T cells were needed for virus clearance in addition to B and CD4(+) T cells. (vi) After low dose infection of C57BL/6 mice with LCMV-WE, virus is eliminated below detectable levels by CD8(+) T cells, but long-term (>2 months) virus control is usually not achieved in the absence of B cells or CD4(+) T cells; reappearance of the virus is paralleled either by exhaustion of virus-specific cytotoxic T lymphocytes or lethal immunopathology. These findings are of importance for adoptive immunotherapy strategies against persistent virus infections in humans.  相似文献   

12.
The identification of tumor-associated Ags recognized by CD8+ CTL and prevention of tumor outgrowth by adoptive transfer of these CTL demonstrates that CD8+ T cells play a major role in antitumor immunity. We have generated B16.F10 melanoma cells that express the glycoprotein epitope amino acid 33-41 (GP33) of the lymphocytic choriomeningitis virus (LCMV) to examine antitumor CD8+ T cell response in C57BL/6 mice immune to LCMV and in mice transgenic for the LCMV GP33-specific P14 TCR (P14 TCR mice). We find that B16.F10GP33 tumor cells grew in syngeneic C57BL/6 mice without inducing T cell tolerance. LCMV infection or adoptive transfer of LCMV-specific effector T cells delayed but did not prevent growth of preestablished tumors in these mice. However, B16.F10GP33 tumor cells were rejected in mice immune to LCMV and in mice treated with LCMV-specific effector T cells on the same day as the tumor. Surprisingly, B16.F10GP33 tumor cells grew in P14 TCR transgenic mice despite an abundance of tumor-associated Ag-specific CD8+ T cells. In these mice, freshly isolated tumor-infiltrating lymphocytes exhibited an activated phenotype and displayed high GP33-specific cytolytic activity when assessed ex vivo. Thus, B16.F10GP33 melanoma cells are able to initiate, but not to sustain, a GP33-specific CTL response sufficient to clear the tumor enduringly.  相似文献   

13.
14.
As previously reported, blood-stage Plasmodium chabaudi AS malaria is lethal by days 10-12 postinfection in susceptible A/J mice that mount an early, predominantly Th2 response. In contrast, resistant C57BL/6 (B6) mice clear the infection by 4 wk with an early Th1 response. In this study, we analyzed in vivo production of IL-12, a potent Th1-inducing cytokine, during the first 5 days after P. chabaudi AS infection in these mice. By day 2, serum IL-12 p70 levels were significantly increased in B6 mice over basal levels and were also significantly higher compared with A/J mice that showed no significant changes in serum p70 levels after infection. Splenectomy of resistant B6 mice before infection demonstrated that the spleen is the major source of systemic IL-12 in these hosts. Splenic mRNA levels of both p40 and p35 were significantly higher in A/J mice; however, the ratios of p40/p35 mRNA levels were similarly up-regulated in both strains. Furthermore, B6 but not A/J mice showed significant up-regulation of splenic IL-12R beta2 mRNA over basal levels by days 3 and 4, coincident with sustained up-regulation of splenic IFN-gamma mRNA levels on days 3-5. However, IL-12R beta1 mRNA levels in the spleen were similarly up-regulated in both mouse strains by day 3. Taken together, these data suggest that high systemic IL-12 production, accompanied by an early and sustained up-regulation of both IL-12R beta1 and beta2 mRNA levels in the spleen, as occurs in resistant B6 mice, appears to preferentially induce protective Th1 responses against blood-stage malaria.  相似文献   

15.
We evaluated the ability of mice made genetically deficient for B cells to resolve a primary infection and to develop protective immunity against vaginal challenge with a human isolate of Chlamydia trachomatis bacteria. The B-cell-deficient microMT mice cleared a primary ascending infection with similar or faster kinetics compared with wild-type mice. The presence of chlamydial inclusion bodies and the degree of inflammation in the upper genital tract was comparable and showed similar kinetics in microMT as in wild-type mice. Following resolution of the primary infection the mice were challenged by 100 ID50 of live bacteria and the level of protection and the extent of local inflammation was assessed. Strikingly, all microMT mice, as well as most of the wild-type mice, demonstrated complete immune protection with no bacterial shedding. While high titres of chlamydia-specific antibodies were stimulated locally and systemically in wild-type mice, no antibodies were detected in microMT mice. However, in both strains, immunohistochemical analysis of the upper genital tract demonstrated the presence of large numbers of CD4+ T cells and increased levels of interferon-gamma (IFN-gamma)-producing cells. The results unequivocally demonstrate that antibodies are not required for full protection to develop against ascending infection with a high dose of C. trachomatis in the female genital tract. Our study confirms the notion that cell-mediated immunity, in particular that owing to CD4+ T helper I (Th1)-type cells, is critical for host resistance against C. trachomatis in mice.  相似文献   

16.
In this study we have investigated the role of CD4+, MHC class II-restricted cytotoxic T lymphocytes (CTLs) in the disease caused by lymphocytic choriomeningitis virus (LCMV) in beta 2-microglobulin deficient (beta 2m-) mice. Intracranial (i.c.) infection with LCMV resulted in death of six out of 11 beta 2m- mice. Mice that survived showed a marked loss in body weight. Death and loss of body weight could be prevented by immunosuppressing the mice with irradiation or cyclosporine prior to i.c. injection of LCMV. This treatment also prevented induction of virus-specific, MHC class II-restricted CTL following peripheral inoculation with LCMV. In vivo depletion of CD4+ cells with antibody also prevented death following i.c. injection whereas in vivo depletion of CD8+ cells had no effect. Disease could be transferred to recipient beta 2m- mice by adoptive transfer of beta 2m- derived immune spleen cells. Transfer of non-immune spleen cells did not result in illness. In vitro treatment of immune spleen cells with anti-CD4 antibody and complement eliminated class II-restricted CTL activity and also prevented mortality of recipients after adoptive transfer. Treatment with anti-CD8 antibody had no effect. We were unable to transfer LCM disease to beta 2m- recipients by adoptive transfer of immune spleen cells from C57BL/6 mice. These results suggest that, unlike normal mice, the pathology of LCM disease in beta 2m- mice is dependent upon virus-specific, CD4+CD8-, MHC class II-restricted T cells.  相似文献   

17.
BALB/c mice vaccinated with vaccinia virus expressing the major surface glycoprotein G of respiratory syncytial virus (RSV) develop lung eosinophilia during RSV challenge. The G protein is remarkable in that it induces CD4+, but no CD8+ T cells in this mouse strain. Studies using passive T cell transfers show that co-injection of CD8+ T cells greatly reduces the Th2-driven lung eosinophilia caused by G-specific CD4+ T cells. By contrast, vaccination with the fusion protein (F) induces both CD8+ and CD4+ T cells, but not lung eosinophilia during RSV infection. These observations suggest that CD8+ T cells play a crucial role in preventing Th2-driven pathology. We therefore depleted mice with anti-CD8 antibodies in vivo. This treatment allowed lung eosinophilia to develop in F-primed mice. Depletion of interferon (IFN)-gamma had a similar effect, suggesting that secretion of this cytokine is the mechanism by which CD8+ T cells exert their effect. To test whether similar effects occurred in other strains of mice, RSV-infected C57BL/6 mice (which do not develop eosinophilia after sensitization to G) were treated with anti-IFN-gamma. Again, these mice developed eosinophilia. In this strain, genetic deletion of CD8-alpha, beta2-microglobulin or genes coding for the transporter associated with antigen presentation (which in each case eliminates CD8+ T cells) caused lung eosinophilia during RSV infection. These studies show the critical roles that CD8+ T cells and IFN-gamma production play in regulating Th2-driven eosinophilia and provide a unifying explanation for previous studies of lung eosinophilia. We propose that vaccines designed to enhance CD8+ T cell recognition might avoid disease caused by CD4+ Th2 cells.  相似文献   

18.
The interaction between CD28 and its ligands, CD80 and CD86, is crucial for an optimal activation of antigen-specific T cells. However, the requirement of CD80 or CD86 co-stimulation in Th2 cell differentiation and activation is controversial. Freshly isolated murine CD4+ and CD8+ T cells were incubated with P815 transfectants expressing a similar level of either CD80 or CD86 in the presence of anti-CD3 mAb. Both CD80 and CD86 co-stimulated the proliferation of CD4+ and CD8+ T cells at comparable time-kinetics and magnitude, but CD86 alone was able to co-stimulate IL-4 and especially IL-10 production in CD4+ T cells. In typical Th2-dependent immune responses elicited by Nippostrongylus brasillensis infection, the anti-CD86 mAb treatment but not the anti-CD80 mAb treatment efficiently inhibited antigen-specific IgE and IgG1 production, which was accompanied with the reduced IL-4 production. Our results suggest that CD86 co-stimulation plays a dominant role not only in the primary activation of Th2 cells but also in the secondary interaction between antigen-primed Th2 cells and B cells.  相似文献   

19.
The murine model of infection with Leishmania major has allowed the demonstration of a causal relationship between, on the one hand, genetically determined resistance to infection and the development of a Th1 CD4+ cell response, and on the other hand, genetically determined susceptibility and Th2 cell maturation. Using this murine model of infection, the role of cytokines in directing the functional differentiation pathway of CD4+ T cell precursors, has been demonstrated in vivo. Thus, IL-12 and IFN-gamma have been shown to favour Th1 cell development and IL-4 is crucial for the differentiation of Th2 responses. Maturation of a Th2 response in susceptible BALB/c mice following infection with L. major is triggered by the IL-4 produced during the first two days after parasite inoculation. This IL-4 rapidly renders parasite specific CD4+ T cells precursors unresponsive to IL-12. A restricted population of CD4+ T cells expressing the V beta 4V alpha 8 TCR heterodimer and recognizing a single epitope on the LACK (Leishmania Activated C-Kinase) antigen of L. major is responsible for this rapid production of IL-4, instructing subsequent differentiation towards the Th2 phenotype of CD4+ T cells specific for several parasite antigens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号