首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
It is shown how gasification can be used for processing wastes including “waste to energy” system. First, an analysis of incineration of wastes taking into account environmental limits is performed. This analysis is aimed at a typical arrangement of a conventional oxidizing incineration plant consisting of waste storage and feeding systems, two-stage incinerator (primary and secondary combustion chambers), heat recovery system involving co-generation and off-gas cleaning system. It is also focused on a new arrangement where the primary combustion chamber (rotary kiln) is substituted by gasification reactor. The proposed concept with a fluidised bed reactor utilizes results of experimental research with various mixtures of wastes (e.g. shredded textile and rubber) considering typical conditions of operation. Experiments provide us with various important characteristics (heat value of produced syngas vs. temperature in the gasification reactor, temperature in the secondary combustion chamber vs. oxygen concentration in outlet flue gas and heat value of syngas, etc.). Then it is possible to make a comparison of conventional incineration and gasification for a concrete industrial process involving a unit for thermal treatment of hazardous industrial waste mixed with municipal solid wastes with capacity of 10,000 t/year. The application of gasification technology brings about the whole range of benefits like minimizing the consumption of auxiliary fuel and decreasing size of the secondary combustion chamber and other subsystems of the incineration plants. Involving such a system with energy and investment cost reduction into an industrial process contributes to meeting cleaner production and environmental legislation regulations.  相似文献   

2.
Automotive shredder residue (ASR) is a heterogeneous waste stream with varying particle size and elemental composition. Owing to its complexity and hazardous characteristics, landfilling of ASR is still a common practice. Nevertheless, incineration with energy recovery of certain ASR fractions (Waste-to-Energy, WtE) emerges as an interesting alternative. In a full scale experiment, a waste mix of 25 % heavy ASR, 25 % refuse derived fuel (RDF), and 50 % waste water treatment (WWT) sludge was incinerated in the SLECO fluidized bed combustor (FBC) at the Indaver site in Antwerp, Belgium. Input and output streams were sampled and analyzed to make an inventory of the most important pollutants and toxics. The inventory was further used to determine the environmental impact. Results are compared to those of two other scenarios: incineration of the usual waste feed (70 % RDF and 30 % WWT sludge) and co-incineration of 39 % ASR with 61 % WWT sludge. It can be concluded that co-incineration of heavy ASR in an existing FBC is a valid and clean technology to increase current reuse and recovery rates. In the considered FBC, 27 % of the energetic value of ASR can be recovered, while all emissions remain well below regulatory limits and only 12.6 % of the heavy ASR needs to be landfilled. The proportion of ASR in the input waste mix is however limited by the heavy metal concentration in the ASR and the generated ashes.  相似文献   

3.
Recycling of auto shredder residue   总被引:1,自引:0,他引:1  
Currently, about 75% of end-of-life vehicle's (ELV) total weight is recycled in EU countries. The remaining 25%, which is called auto shredder residues (ASR) or auto fluff, is disposed of as landfill because of its complexity. It is a major challenge to reduce this percentage of obsolete cars. The European draft directive states that by the year 2006, only 15% of the vehicle's weight can be disposed of at landfill sites and by 2015, this will be reduced to 5%. The draft directive states that a further 10% can be incinerated. The quantities of shredder fluff are likely to increase in the coming years. This is because of the growing number of cars being scrapped, coupled with the increase in the amount of plastics used in cars. In Sweden, some current projects are focusing on recycling of ASR material. In this paper some different alternatives for using this material are reported. The hypothetical injection of ASR into a blast furnace concentrating on ASR's effect to some blast furnace (BF) parameters has been completed using a blast furnace mass balance model. As a result, in principle, ASR can be used as reducing agent in the BF process if certain conditions are met. The particle size of ASR material must be controlled to ensure optimal gasification of the material in the raceway. Regarding the chemical composition of ASR, the non-ferrous content can affect the pig iron quality, which is difficult to rectify at a later point. The most attractive recycling alternative is to use the products obtained from pyrolysis of ASR in appropriate metallurgical processes.  相似文献   

4.
5.
Efficient waste-to-energy system as a contribution to clean technologies   总被引:2,自引:2,他引:0  
This paper deals with the problem of efficient energy utilization in the field of thermal processing of waste (waste-to-energy). An up-to-date incineration plant cannot be considered as only waste disposal facility. The waste combustion (incineration) processes are accompanied by release of large amount of energy, that shall be effectively utilized (e.g. steam production and its export to consumers, power generation, cogeneration). In addition to the main purpose of incineration, i.e. treating the specified amount of waste, waste-to-energy systems are able to some extent substitute conventional energy production plants fired by fossil fuel and thus to contribute to solving global environmental problems. For example, methodology presented in Reference Document on the Best Available Techniques for Waste Incineration (BREF) can be used for assessment of plant performance from the view of energy utilization. This approach is based on evaluation of criterion Plant Efficiency. An existing incineration plant has been evaluated and results are presented and discussed. In the future, it has been expected that evaluation like this will be obligatory for every plant. The arrival of more and more sweeping environmental limits represents a driving force for retrofit. At the same time maximum heat recovery and efficient energy utilization should be required. Influence of different operational modes (type of waste incinerated, combustion temperature, air-preheating etc.) and lay-out of heat recovery system (e.g. cogeneration) on plant performance has been investigated. A mathematical model based on combination of basic auxiliary operations and simple thermodynamic models of heat engines has been created with the aid of a specific computational tool. Its conception is based on both requirements and experience coming from industry. The most serious problem of effectively running incineration plants consists in economical utilization of energy produced. Examples of integration into existing energy systems are shown and discussed. An erratum to this article can be found at  相似文献   

6.
An overview is given on methods and technologies for limiting the gaseous emissions from waste combustion. With the guideline 2000/76/EC recent European legislation has set stringent limits not only for the mono-combustion of waste in specialized incineration plants but also for co-combustion in coal-fired power plants. With increased awareness of environmental issues and stepwise decrease of emission limits and inclusion of more and more substances into the network of regulations a multitude of emission abatement methods and technologies have been developed over the last decades. The result is the state-of-the-art waste incinerator with a number of specialized process steps for the individual components in the flue gas. The present work highlights some new developments which can be summarized under the common goal of reducing the costs of flue gas treatment by applying systems which combine the treatment of several noxious substances in one reactor or by taking new, simpler routes instead of the previously used complicated ones or - in the case of flue gas desulphurisation - by reducing the amount of limestone consumption. Cost reduction is also the driving force for new processes of conditioning of nonhomogenous waste before combustion. Pyrolysis or gasification is used for chemical conditioning whereas physical conditioning means comminution, classification and sorting processes. Conditioning yields a fuel which can be used in power plants either as a co-fuel or a mono-fuel and which will burn there under much better controlled conditions and therefore with less emissions than the nonhomogeneous waste in a conventional waste incinerator. Also for cost reasons, co-combustion of wastes in coal-fired power stations is strongly pressing into the market. Recent investigations reveal that the co-firing of waste can also have beneficial effects on the operating behavior of the boiler and on the gaseous emissions.  相似文献   

7.
Concrete is the most widely used construction material and, for the most part, is produced using non-renewable natural resources and energy intensive processes which emit greenhouse gasses. There exists an opportunity to improve the sustainability of this industry by further exploring the use of alternative materials. As an aggregate, glass bottle waste has faced specific challenges including bond, ASR gel production, and strength degradation of the concrete. This paper reviews the literature pertaining to incorporating waste glass into concrete as a supplementary cementing material. Pozzolanic properties of waste glass as an SCM and ASR are related to particle size and percent addition. Lithium additives control ASR expansion; however, the mechanism of this control has yet to be defined.  相似文献   

8.
This study explores design alternatives for the purification and possible reuse of low-volume organic solvents waste streams in pharmaceutical manufacturing. Solvent use has a large impact on the life cycle of pharmaceutical processes, as typically 80–90% of the total mass used in the production of an active pharmaceutical ingredient is attributed to solvent use. Solvents are not consumed in pharmaceutical processes so they exit the process as waste. These waste streams are usually disposed of using incineration; therefore, generating significant life cycle emissions from disposal and replacement of virgin solvent. Solvent recovery efforts are generally limited to large-volume waste streams. However, results show that solvents in low-volume streams can also be economically recovered using a versatile multi-campaign solvent recovery skid. Three different solvent waste streams were evaluated, and 85.3% reduction in total emissions and 86.3% reduction in operating costs were achieved. Investment in the solvent recovery system was determined to have a payback period of 4.5 years and a 28% IRR over 10 years. A life cycle impact assessment shows impacts on the human health, ecosystems, and resources categories have been reduced by 82.4, 85.1, and 87.1%, respectively.  相似文献   

9.
The environmental benefits of recycling are assessed against other end-of-life (EOL) treatments for Carbon Fibre Reinforced Plastic (CFRP) waste. Recycling via pyrolysis, incineration with energy recovery, and disposal via landfilling are compared. To account for physical changes to materials from use and recycling, equivalence between recycled and virgin materials is calculated based on the ability to produce a short fibre composite beam of equivalent stiffness. Secondary effects of using Recycled Carbon Fibre (RCF) in a hypothetical automotive application are also analysed. Results underline the ecological constraints towards recycling CFRPs and demonstrate that benefits from recycling are strongly linked to the impacts of the selected recovery process, the materials replaced by RCF in a secondary application, and also to the type of secondary application in which they are used.  相似文献   

10.
Sequential extraction procedures and the high-pressure digestion method were selected to determine the element constituents of fly ash samples. Sequential extraction is one of the most useful methods used to measure the various elements from municipal solid waste incineration ash and contaminated soils. The extract from each step is analyzed using various techniques and equipment, and the results are then evaluated. In this work, a six-step extraction procedure modified from that of Tessier et al. and Wang et al. was performed and applied to the certified reference material BCR 176 (city waste incineration ash). Analyses were carried out by various techniques such as inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma-mass spectrometry (ICP-MS), scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX), and X-ray powder diffraction (XRPD) to evaluate the characteristics of fly ash. The extraction efficiency of many elements was higher than 80%, and the relative standard deviations (RSD) for recovery of most elements were within 10%. In addition, an H(2)O(2)+HNO(3)+HF mixed acid digestion solution processed using a low-temperature evaporation procedure was selected as the optimal process for fly ash digestion. The results of this work provide information on the chemical composition, distribution, and potential mobility of the investigated elements.  相似文献   

11.
With increasing consumption propelled by economic prosperity, waste generation per capita in developing countries is growing quickly. Traditional approaches of open dumping and landfilling are encountering physical constraints, particularly in megacities, and the need for alternate municipal solid waste (MSW) management strategies is urgent. Among alternatives that are commonly considered are waste-to-energy technologies including incineration and plasma gasification. Previous studies convey the benefits of such technologies, but most do not consider the waste and environmental conditions in tropical megacities such as Mumbai, India, making these studies of limited use to developing countries. This article evaluates the exergetic potential of converting MSW to useful work by thermal and biochemical conversion technologies in the Indian context, considering the facts that the scale of production, composition, climate, segregation practices, moisture content of MSW, etc. in a developing tropical country like India differ significantly from those in developed societies in temperate climate locations. Both, exergy and economic analysis find gasification to be attractive in terms of its monetary return and thermodynamic efficiency. However, this analysis also identifies major hurdles in adopting advanced waste-to-energy technologies including lack of waste segregation, high moisture content, and high capital cost of the most thermodynamically efficient technology.  相似文献   

12.
在简述风电叶片发展历史同时,对叶片制造特点及其相关废弃物来源、后期数量、处理必要性与可行性等进行了详细阐述。随后根据风力发电复合材料叶片废弃物相关特点等,从环境影响、处理费用、处理所得物用途三方面,对物理粉碎法、材料再循环与能量回收结合法、水泥制造法、焚烧热能法四种可能处理方法进行了深入分析;分析得出因废弃物本身及处理后可替代物价值较低,进而致使处理时环境效益或有一定优势,但经济效益不理想。最后根据该类废弃物特点及处理分析结论,并结合我国实际情况,建议后期优先发展水泥制造法,适时适地适当发展焚烧热能法、物理粉碎法。  相似文献   

13.
This paper presents an industrial ecological insight into local waste management in Pielinen Karelia, Finland. There local system is experiencing major changes because of tightening EC waste legislation including the directives on waste incineration (2000/76/EC) and landfilling of wastes (1999/31/EC). Small local landfills are closing and most of municipal wastes will be transported 120–180 km to large-scale waste management centre in Kuopio. The paper applies three industrial ecosystem indicators, based on environmental, economic and employment impacts of different waste management technologies. Environmental indicator is CO2 equivalent emission, economic indicator is based on costs and revenues of waste management, and social (i.e. employment) indicator includes new jobs generated. The results indicate that waste incineration option in forthcoming regional cooperation could create emission savings up to 117–394 kg CO2 eqv./ton of municipal waste when compared to local landfilling. As economic impacts, new regional cooperation and long-distance transportations will increase the costs from previous 45.6–55.2 €/ton in local landfilling to 97.4 €/ton in regional landfilling and 120.8–126.9 €/ton in regional REF-III incineration. In terms of employment, the new cooperation could create 2–6.5 new jobs. The regional cooperation results to rising operational costs but avoids investments to new local infrastructure. It also creates significant emission savings, maintains current employment in waste handling and creates new jobs in long-distance transportation.
Lasse OkkonenEmail:
  相似文献   

14.
The Swedish Armed Forces have large stocks of ammunition that were produced at a time when decommissioning was not considered. This ammunition will eventually become obsolete and must be destroyed, preferably with minimal impact on the environment and in a safe way for personnel. The aim of this paper is to make a comparison of the environmental impacts in a life cycle perspective of three different methods of decommissioning/destruction of ammunition, and to identify the environmental advantages and disadvantages of each of these destruction methods: open detonation; static kiln incineration with air pollution control combined with metal recycling, and a combination of incineration with air pollution control, open burning, recovery of some energetic material and metal recycling. Data used are for the specific processes and from established LCA databases. Recycling the materials in the ammunition and minimising the spread of airborne pollutants during incineration were found to be the most important factors affecting the life cycle environmental performance of the compared destruction methods. Open detonation with or without metal recycling proved to be the overall worst alternative from a life cycle perspective. The results for the static kiln and combination treatment indicate that the kind of ammunition and location of the destruction plant might determine the choice of method, since the environmental impacts from these methods are of little difference in the case of this specific grenade. Different methods for destruction of ammunition have previously been discussed from a risk and safety perspective. This is however to our knowledge the first study looking specifically on environmentally aspect in a life cycle perspective.  相似文献   

15.
Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.  相似文献   

16.
Dechlorination of ASR (auto shredder residual) wastes has been studied in the present work. ASR was predechlorinated with Ca(OH)(2) extraction as well as dechlorinated with Ca(OH)(2) during incineration or pyrolysis. Experimentally, pre-dechlorination of ASR via extraction of Cl with a Ca(OH)(2) solution (pH 12.5) may reduce Cl contain in the ASR by 15%. Extraction of Cl at elevated temperatures (such as 373 K), interestingly, led to a further reduction of Cl in the ASR to 33.5%. A small amount of HCl and light hydrocarbons (C(1)-C(5)) were yielded during pyrolysis of the ASR in the presence of Ca(OH)(2) at 773 K. On the contrary, 75-85% of Cl may be mineralized (CaCl(2)) with Ca(OH)(2) (or CaO) during incineration at 1100 K.  相似文献   

17.
If we consider the desirability of reducing fossil fuel consumption, together with the increasing production of combustible solid wastes, there is clearly a need for waste treatment systems which achieve both volume reduction and energy recovery. Direct incineration method is one such system. The aim of this work was to analyze the municipal solid waste incineration situated in the Province of Turin (Piedmont, North Italy), especially its economical effects in consequence of the energy recovery that can be achieved. In order to perform this analysis, two kinds of energy recovery have been studied: electric energy (electrical configuration) only, and both electric and thermal energy (cogenerative configuration). So after a reconstruction of the economic situation, by considering all the costs and revenues, for both the possible energetic configurations the correspondence between the environmental convenience (that was evaluated in a previously work) and the economic convenience has been defined. The main obtained results highlight that currently the environmental convenience corresponds to the cogenerative configuration; instead the economical convenience in the actual condition corresponds to the only electric configuration. Anyway, by working on the thermal energy price, it is possible to obtain at the same time an environmental and economic convenience.  相似文献   

18.
Bottom and fly ash collected from automobile shredder residue (ASR) incinerator have been characterized in terms of particle size, compositions, and heavy metal leaching by the standard TCLP method. Two alternative methods were also examined for the treatment of heavy metals in ASR incinerator ash from the aspect of recycling into construction or lightweight aggregate material. It was remarkable that the concentration of Cu was very high compared to common MSWI bottom and fly ash, which was probably originated from copper wires contained in ASR. As a whole, the results of characterization of ASR fly ash were in good agreement with common MSWI fly ash in terms of particle size, pH, and water-soluble compounds. It was clearly found that heavy metals could be removed thoroughly or partly from ASR fly ash through acid washing with dilute HCl solution so that the remaining fly ash could be landfilled or used as construction material. It was also found that the amount of heavy metal leachability of lightweight aggregate pellet prepared with ASR incineration ash could be significantly decreased so that the application of it to lightweight aggregate would be possible without pre-treatment for the removal of heavy metals.  相似文献   

19.
The technologies of gasification of combustible organic waste are considered. The characteristics of the processes of gasification of vegetable biomass waste in the gas producers of direct and inverse combustion processes are given. __________ Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 78, No. 4, pp. 63–67, July–August, 2005.  相似文献   

20.
Untreated municipal solid waste incineration (MSWI) bottom ash fines (0–2 mm) have poor pozzolanic properties, and contain substances which can pose an environmental risk (e.g. heavy metals and salts). This study investigates combined treatments applied on bottom ash fines (BAF) to increase their reactivity. The treated BAF is compared with both untreated BAF and cement, and its contribution to cement hydration is investigated. Additionally, the utilization of the treated BAF in mortar as cement replacement is tested. Finally, the leaching properties of mortars containing treated and untreated BAF are estimated. According to the results obtained, the 28-day compressive and flexural strengths of mortar with 30% treated bottom ash are about 16% and 6% lower than the reference mortar, respectively. The leaching of contaminants from the crushed mortars with BAF are well under the limit values imposed by Dutch legislation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号