首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
陈加波  周鑫  李旭 《化工进展》2022,41(7):3900-3907
以活性污泥作为接种污泥,研究了采用厌氧序批式生物膜反应器(anaerobic sequencing biofilm batch reactor,AnSBBR)进行低浓度含氮废水的厌氧氨氧化工艺的快速启动。通过调整进水溶解氧(dissolved oxygen,DO)和水力停留时间(hydraulic retention time,HRT)等关键控制因素,加速厌氧氨氧化生物膜的快速形成。结果表明,启动运行40天后,发生明显的厌氧氨氧化反应。运行90天,氮去除效率(nitrogen removal efficiency,NRE)和脱氮负荷率(nitrogen removal loading rate,NRLR)分别达到99.7%和0.048 kg/(m3?d)。生物膜内部呈现红色,扫描电子显微镜(scanning electron microscope,SEM)发现厌氧氨氧化生物膜是由多个小聚合体形成,多为球菌,内部结构排列紧密。微生物群落进一步分析表明,厌氧氨氧化菌(AnAOB)主要为Candidatus BrocadiaCandidatus Kuenenia,且在168天最高达到了12%的相对丰度,表明AnAOB成为生物膜内重要的优势菌属。  相似文献   

2.
常温低基质厌氧氨氧化ASBR反应器的快速启动   总被引:3,自引:0,他引:3  
采用低基质模拟废水〔NH_4~+-N、NO_2~--N分别为(25±0.4)、(33±0.6)mg/L〕,在温度为(23±0.5)℃的条件下,研究了厌氧氨氧化ASBR反应器的快速启动。第Ⅰ阶段HRT为24 h,pH不控制,菌体自溶期出水NH_4~+-N为69 mg/L,活性停滞期出水NH_4~+-N与进水几乎相等;第Ⅱ~Ⅲ阶段,菌体处于活性提高期,HRT分别为12、8 h,pH控制为8.0~8.2,出水NH_4~+-N降低到1.6 mg/L,NO_2~--N均先升高后降低;第Ⅳ阶段HRT为4 h,pH控制为8.0~8.2,出水NH_4~+-N和NO_2~--N均低于1 mg/L,TN去除负荷为352.3 mg/(L·d),△m(NH_4~+-N)∶△m(NO_2~--N)∶△m(NO_3~--N)=1∶(1.33±0.02)∶(0.26±0.02),反应器启动成功。  相似文献   

3.
厌氧序批式反应器的厌氧氨氧化工艺启动运行   总被引:5,自引:2,他引:5  
在厌氧序批式反应器中接种好氧硝化污泥,进行了培养厌氧氨氧化污泥的研究。在进水pH值为7.2~7.8,温度为30±1℃的条件下运行142d,成功培养出厌氧氨氧化污泥。反应器内的污泥量(以VSS计)由原来的9.90g/L增加到18.99g/L,水力停留时间为1.20d,总氮容积负荷为0.4318kg/(m·3d)时,总氮去除率最高达到93.3%,平均为80.5%,氨氮和亚硝酸盐氮的去除率最高分别达到93.9%和99.8%,平均去除率分别为81.2%和85.7%,氨氮和亚硝酸盐氮去除的比例为1∶1.387±0.024。对该工艺优化实验研究表明,适宜pH值为7.2~7.8,最适宜温度为35℃;且适度强化反硝化作用有利于提高反应器的脱氮性能。  相似文献   

4.
厌氧氨氧化反应器性能的稳定性及其判据   总被引:12,自引:4,他引:12       下载免费PDF全文
金仁村  胡宝兰  郑平  陈旭良 《化工学报》2006,57(5):1166-1170
引言 性能稳定性是反应器的基本性能指标,一个不稳定的反应系统,即使反应潜力再大,其应用价值也将大打折扣.在反应器运行过程中,负荷冲击经常出现,抗负荷冲击能力便成了衡量反应器性能优劣的重要指标.尽管对反应器抗负荷冲击能力的研究较多,但大多为定性研究,缺乏定量分析[1-2],更缺乏通用的量化指标.  相似文献   

5.
为考察厌氧氨氧化反应器快速启动效果和脱氮性能,按照3∶1的体积比接种厌氧池厌氧污泥和氧化沟好氧污泥,运行77 d成功启动厌氧氨氧化反应。启动过程中反应器内污泥由黑色变为棕黄色最终变为红棕色,并逐渐颗粒化。采用高通量测序技术对启动成功后的厌氧氨氧化颗粒污泥进行微生物群落结构分析,发现主要菌门为:浮霉菌门(Planctomycetes)、变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes)和酸杆菌门(Acidobacteria),其中浮霉菌门(Planctomycetes)相对丰度最大,占比41.98%。厌氧氨氧化菌(AnAOB)的优势菌属为Candidatus_Brocadia属,占比为38.78%。反应器稳定运行阶段NH4+-N和NO2--N平均去除率分别达到97.00%和98.58%,TN平均去除率及TN平均去除负荷分别达到81.57%和0.14 g/(L·d),化学计量比Δn(NH4+-N...  相似文献   

6.
采用厌氧序批式反应器(ASBR)和厌氧序批式生物膜反应器(ASBBR),以相同的反硝化污泥作为接种污泥,自配模拟废水,调节进水pH为7.5~8.0,反应器中水体温度为(30±0.5)℃,研究了生物填料的投加对厌氧序批式反应器厌氧氨氧化反应的启动影响。经过120 d运行,ASBBR成功启动了厌氧氨氧化反应,NH3-N容积负荷为96mg/(L·d),NH3-N去除率达到81.53%,NH3-N、NO2--N减少量与NO3--N生成量之比为1:1.11:0.25。而未投加填料的ASBR没有发生厌氧氨氧化反应,NH3-N容积负荷为22 mg/(L·d),NH3-N去除率达到23.36%,NH3-N、NO2--N减少量与NO3--N生成量之比为1:0.91:1.18。实验结果表明,生物填料的投加使ASBBR易于形成厌氧环境,有利于厌氧氨氧化反应器的启动,同时有利于NH3-N的去除。  相似文献   

7.
低基质厌氧氨氧化SBBR反应器启动研究   总被引:1,自引:0,他引:1  
采用SBBR反应器,接种普通污水厂剩余污泥,以人工配制含NH4+-N和NO2--N的低氨氮废水为进水,NH4+-N、NO2--N分别为24.3~32.0 mg/L、31.9~37.5 mg/L,p H为7.60~7.75,水温为(32±1)℃,考察低基质条件下厌氧氨氧化反应器启动及稳定运行特征。结果表明:经100余天后,SBBR厌氧氨氧化反应器成功启动。进水TN为60.8~68.7 mg/L时,平均去除率为88.3%,NH4+-N和NO2--N的去除率均达到95%以上。稳定运行期间,NH4+-N去除量、NO2--N去除量和NO3--N生成量的质量浓度之比为1∶1.37∶0.27,出水p H略高于进水,稳定在7.95左右。  相似文献   

8.
厌氧氨氧化技术因其节能、运行费用低、不需添加有机物等优点而备受关注,但反应器启动慢是该技术面临的瓶颈问题。为了加速厌氧氨氧化反应器的启动,该研究在两个不同阶段中先后在同一UASB反应器中接种絮状污泥和添加颗粒活性炭,以含NH4+-N和NO2--N的人工配水为进水,进行连续试验,并在试验过程中调整运行参数,最终添加活性炭的絮状污泥反应器在运行85 d后成功启动厌氧氨氧化过程,总氮去除率稳定在80%-90%。结果表明在使用活性炭吸附法固定化时,反应器启动迅速,活性炭可以成为厌氧氨氧化菌的理想载体。  相似文献   

9.
厌氧氨氧化污泥启动EGSB反应器研究   总被引:1,自引:0,他引:1  
通过厌氧膨胀颗粒污泥床(EGSB)反应器接种低温(4℃左右)下存放18个月的厌氧氨氧化污泥,处理模拟废水,研究如何用长时间低温保存后的厌氧氨氧化污泥启动反应器。在温度(34±1)℃、进水pH为7.40~7.64、DO的质量浓度控制在0.10 mg/L以下成功启动反应器。运行110 d后,进水TN负荷最高可达2.3 kg/(m.3d),NH4+-N、NO2--N去除率分别为90.93%、99.76%,出水pH明显高于进水,平均达到7.99;第135天在反应器中发现有红色厌氧颗粒污泥形成;经扫描电子显微镜观察,第165天厌氧颗粒污泥布满球状菌。  相似文献   

10.
11.
序批式生物膜(SBBR)法和SBR法的对比研究   总被引:10,自引:0,他引:10  
在序批式活性污泥(SBR)反应器中填充弹性立体填料,形成序批式生物膜反应器(SBBR),对SBBR和SBR去除CODCr和NH3-N的效果进行对比研究。结果表明:SBBR对CODCr,NH3-N及浊度的去除效果均高于相同试验条件下SBR,特别是在反应温度较低时,SBBR出水水质优于SBR。  相似文献   

12.
对序批式生物膜反应器(SBBR)进行改造,以便达到更高同步硝化反硝化(SND)水平。在相同的环境和参数条件下进行SND启动对照实验,同时借助高通量测序来探究微生物群落的多样性,从而分析两组反应器处理效果不同的原因。两组反应器启动完成后,其同步硝化反硝化率(RSND)、COD去除率、氨氮去除率均能达到较理想水平,改进型SBBR中微生物构成也更加均衡。通过综合分析,发现改进型SBBR去除效果更为稳定、高效。  相似文献   

13.
周凯  周元祥  徐鑫 《广东化工》2014,(6):121-122
本试验以普通活性污泥为种泥,采用升流式厌氧生物滤床(UAF)反应器,在pH为7.5的室温条件下,以NH4Cl和NaNO2配制人工模拟废水,通过逐步提高NH4+-N与NO2--N的负荷对厌氧氨氧化菌进行培养与驯化,在反应器运行到148 d左右时NH4+-N与NO2--N去除率分别达到56%、62%,且在之后的运行过程中其去除率呈同步变化,NH4+-N与NO2--N同时去除。通过镜检发现在反应器下部形成了具有厌氧氨氧化活性的棕红色颗粒污泥,实现了厌氧氨氧化反应的快速启动。  相似文献   

14.
寅诗  张驰 《辽宁化工》2014,(6):749-753
厌氧氨氧化反应器的启动时间过长是制约厌氧氨氧化在工程实践中发展和应用的一个关键性因素,因此实现厌氧氨氧化反应器的快速启动对于该项技术的推广意义十分重大。分析比较了选取不同类型的反应器和接种不同类型的污泥对于厌氧氨氧化反应器启动时间及脱氮效果的影响,并对今后的研究方向提出了建议。  相似文献   

15.
本文选取4个完全相同的ASBR反应器(R1、R2、R3和R4)分别接种氧化沟污泥,Anammox污泥:氧化沟污泥(VSS∶VSS)=1:100,Anammox污泥:氧化沟污泥(VSS∶VSS)=1:50,Anammox污泥:氧化沟污泥(VSS∶VSS)=1:10。R3和R4反应器分别运行至第20天和第6天时,ΔNO2--N/NH4+-N和ΔNO3--N/NH4+-N比值趋近理论值,总氮去除率≥70%,标志着Anammox反应启动成功。高通量测序和qPCR结果显示R1和R4反应器关键功能菌群丰度存在明显差异,反应后期R4反应器中厌氧氨氧化菌hzsB功能基因占总菌比例为67.38%,说明R4具备稳定高效的厌氧氨氧化性能。本研究通过调整厌氧氨氧化与氧化沟污泥比例实现了Anammox反应的快速启动,为解决Anammox工艺启动时间长的难题提供了新的方法。  相似文献   

16.
为探究膜生物反应器(MBR)进行厌氧氨氧化的可行性及性能,通过逐渐提高进水NH_4~+-N、NO_2~--N的含量和降低HRT,成功启动了自流出水式MBR厌氧氨氧化过程,分析了反应器脱氮效果和厌氧氨氧化污泥特性,并采用扫描电镜和X射线光电子能谱中空纤维膜表面进行分析。结果表明,经过60 d的启动,NH_4~+-N、NO_2~--N和TN的去除率分别达到96.22%、99.91%和81.66%,TN去除负荷最大可达到330 g/(m~3·d)。在启动过程中,污泥颜色逐渐变为红褐色;中空纤维膜表面厌氧氨氧化菌呈不规则的椭球状,结构紧凑;MBR运行稳定阶段末期中空纤维膜表面C、N和Ca特征峰增多,是膜污染化学组分的主要构成元素。  相似文献   

17.
王文光  马晨曦 《辽宁化工》2014,(6):746-748,753
厌氧氨氧化工艺的启动过程就是厌氧氨氧化菌不断富集和活性逐步提高的过程。本文综述了实现厌氧氨氧化工艺快速启动的基本策略,并总结了厌氧氨氧化工艺启动成功的主要特征。相关文献表明,培养生物膜能够有效地减少菌种流失,接种污泥颗粒化有利于厌氧氨氧化颗粒污泥的形成,进而缩短反应器的启动时间。  相似文献   

18.
采用3套厌氧序批式反应器(ASBR),接种厌氧污泥,研究了不同泥水比(4∶6,5∶5,6∶4)R1、R2、R3反应器运行过程中有机物的去除效率及颗粒污泥性质的差异,同时利用高通量测序技术从分子生物学水平分析微生物群落结构。研究表明,3组反应器运行125 d,均培养出成熟的厌氧颗粒污泥,污泥粒径各范围(0.4~0.6,0.6~1.0,1.0~1.4和1.4~1.8 mm)的占比分别为12.5%,29.5%,49.8%,11.5%;10.4%,27.6%,46.4%,10.2%和9.8%,27.3%,40.1%,8.8%,R1培养出的颗粒污泥粒径较大,结构更为致密。扫描电镜发现,污泥菌群均由以丝状菌和杆状菌为主逐渐转变为以球状菌为主的集聚体。高通量测序结果表明,拟杆菌(Bacteroidetes)、绿弯菌门(Chloroflexi)是丰度较高的菌门;乙酸型产甲烷菌及氢营养型甲烷菌丰度大幅上升,分别由接种污泥时的29.7%和24.7%增长至52.9%,48.9%,52.2%和36.5%,33.8%和29.3%,泥水比较小的R1富集了更多的产甲烷菌,显著提升了甲烷产量。  相似文献   

19.
王玫  刘艳  邓芳 《江西化工》2013,(4):33-36
厌氧氨氧化(ANAMMOX)是一种新型的经济的生物脱氮新工艺。近年来,对厌氧氨氧化工艺的研究取得了许多突破性的成果。综述了厌氧氨氧化菌以及厌氧氨氧化反应启动的相关研究。介绍了厌氧氨氧化菌的富集培养分离的方法以及特性;总结分析了近年来采用不同反应器、不同污泥源进行厌氧氨氧化反应启动和完成启动的评判标准。  相似文献   

20.
厌氧序批式反应器是第三代新型高速厌氧反应器,其快速启动运行规律的研究相对较少。总结了目前国内外关于ASBR快速启动的研究进展情况,并结合试验成果,论述了ASBR快速启动的影响因素,包括运行方式、搅拌、种泥类型、投加物、反应器构型等方面,以及当前研究中存在的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号