首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对多家煤矿井下废水进行了采样分析,并对典型水样进行了混凝特性试验,考察了水样初始p H值、混凝剂投加量以及助凝剂投加量对混凝效果的影响。试验结果表明,偏酸性有助于PAC混凝效果的发挥。对浊度为1 395 NTU、SS的质量浓度为448 mg/L的煤矿井下废水,在PAC投加量为100 mg/L时,混凝对水样浊度和SS的去除率分别达到99.3%和95.5%。助凝剂PAM的加入对水样Zeta电位和电导率作用不显著,但能通过吸附架桥作用在PAC投加量较小时促进水中颗粒的沉降。当PAC投加量为40 mg/L,PAM投加量为2 mg/L时,对水中浊度和SS的去除率分别达到99.4%和96.9%。  相似文献   

2.
在常规工艺的基础上,通过在混凝搅拌前投加氧化剂高锰酸钾及氯的方式去除水中铊。通过影响水中铊去除率的单因素试验,找出处理铊浓度为0.3μg/L的原水所需的合理的氧化剂的量为:高锰酸钾0.5~0.7 mg/L,次氯酸钠3~4 mg/L(以有效氯计),此时,铊去除率可达70%。调整试验水的pH为9.0~9.5,同时采用聚合硫酸铁作为絮凝剂,铊去除率可达80%。氧化剂及混凝剂的投加量应根据原水水质具体情况进行调整,但不得出现二次污染。  相似文献   

3.
采用石墨为阴极、Ti/RuO_2-IrO_2为阳极的复极性三维电极反应器对含汞气田废水进行处理,研究了电解时间、粒子电极填充量、初始pH值、电解电流密度等因素对去除COD和汞的影响。结果表明,采用双阳极,在电解时间120 min,粒子电极填充量40 g/L,原水pH,电流密度200 mA/cm~2的条件下,可将废水中COD从8 723 mg/L降低至459 mg/L,去除率为94.7%,总汞从2.218 mg/L降低至0.036 mg/L,去除率为98.3%。且COD的去除符合一级动力学模型,汞的去除符合二级动力学模型。处理后水中总汞含量达到国家二级排放标准;双阳极三维电极进一步与二维电极组合能使处理后水中COD降低至50 mg/L以下,达到国家排放标准。  相似文献   

4.
黄浦江水源突发挥发酚污染应急处理研究   总被引:1,自引:1,他引:0  
针对黄浦江上游水源可能发生的突发挥发酚污染事故,开展应急处理小试和中试研究,考察了混凝、PAC吸附和PAC吸附-常规工艺对原水中挥发酚的应急处理能力。结果表明,强化混凝方法无法有效应对原水突发挥发酚污染问题。PAC对原水中苯酚的Freundlich吸附等温式为q_e=0.428 6 C_e~(0.240 8),根据该式求得当原水苯酚浓度为0.008 mg/L时,PAC吸附应急处理的理论投加量为12 mg/L。PAC强化常规工艺可作为应急措施有效应对突发酚污染事故,当原水苯酚超标浓度为0.008 mg/L时,PAC最佳投加量为10 mg/L。  相似文献   

5.
采用氧化、混凝、吸附及其联合处理工艺去除垃圾渗滤液COD和色度。研究结果表明:(1)单独采用混凝法,COD和色度的去除率较低,分别仅有0.33%和4.62%;(2)使用高锰酸钾化学氧化法,COD和色度的去除率分别为83.84%,96.05%,最佳投放浓度为0.48 g/L;(3)氧化-混凝-吸附联合法处理实验结果较为理想,高锰酸钾投加量为0.48 g/L,粉末活性炭投加量为0.9 g/L,COD和色度去除率分别达到93.31%和98.82%。  相似文献   

6.
采用微波对膨润土进行改性,研究微波改性膨润土吸附与聚丙烯酰胺(PAM)混凝联用技术处理实际冶炼废水中的重金属。结果表明,单独微波改性膨润土吸附试验中,当投加量为25 g/L,废水中的锰、锌、镉和铅的去除率分别可达71.9%、89.7%、78.5%和93.1%;采用微波改性膨润土吸附与PAM混凝联用技术时,重金属的去除率均有上升,沉降效果明显改善。当微波改性膨润土投加量为25 g/L,PAM投加量为2 mg/L,吸附时间为50 min,废水pH=8时,对锰、锌、镉和铅的去除率分别可达98.9%、99.6%、99.7%和98.3%,出水中的锌、镉和铅的排放浓度可达到国家相关水质标准。  相似文献   

7.
采用吸附-混凝技术对含氮废水进行处理,并以废水中T-N和NH_3-N的去除率为研究对象,对吸附剂的种类及加量、pH值、PAC和PAM加量进行筛选;实验结果表明,相比于活性炭和硅藻土,改性硅藻土的吸附性能较好,T-N和NH_3-N的去除率可达63.15%和42.16%;同时对工艺参数进行了优化,当pH值为8、改性硅藻土加量为100 mg/L、PAC加量为60 mg/L、PAM的最佳加量为0.6 mg/L时,可以使T-N和NH_3-N的去除率分别达到65.16%和41.56%。  相似文献   

8.
乐果微污染原水的碱解-活性炭处理研究   总被引:2,自引:0,他引:2  
在去除模拟污染源水中乐果的实验室和中试试验中,考察了pH、粉末活性炭投加量对去除效果的影响.结果表明,当原水中乐果的质量浓度为0.095~0.286 mg·L~(-1)、pH为9.5~10时,乐果的去除率都随着粉末活性炭投加量的增加而提高,平均去除率为35.4%~68.3%;采用石灰碱解+粉末炭吸附预处理乐果超标1倍(质量浓度0.2 mg·L~(-1))左右的原水,在混凝沉淀工艺之前调节pH至9.5左右,常规出水的乐果含量可达到GB 5749-2006的要求.  相似文献   

9.
本研究采用化学混凝-芬顿氧化联合法处理某膏药生产处理废水。混凝试验结果表明:当采用聚合硫酸铁,且投加量为1000 mg/L,混凝时间3 h,pH值8.0时,废水COD去除率为37.0%,水处理处理效果较好。芬顿氧化试验表明:H2O2和Fe2+投加量分别为80mg/L和60 mg/L,反应时间为80min,pH值为3.0时COD去除率达89.1%。化学混凝芬顿氧化联合试验表明:该废水的COD去除率可达90.1%,出水较为清澈。  相似文献   

10.
采用聚合氯化铝混凝预处理后的煤制甲醇废水为水样,选择天然方沸石为吸附剂,混凝后出水在沸石投加量为15.0g/L,吸附时间40min,pH值为7.0的条件下,经吸附进一步处理后,煤制甲醇废水的最终氨氮、COD、SS的去除率分别为33.4%、13%、74.5%,污染物出水浓度降到了385mg/L、189mg/L、13mg/L,为后续生化处理创造了有利条件。  相似文献   

11.
采用纳米Fe_3O_4与聚合氯化铝(PAC)复配制备磁性复合絮凝剂MFPAC,利用MFPAC强化混凝-改性矿化垃圾吸附处理垃圾渗滤液。结果表明,MFPAC中适宜的前驱物质量比为m(Fe_3O_4)∶m(PAC)=1∶3,正交实验结果表明,m(Fe_3O_4)∶m(PAC)以及投药量对混凝效果有较为显著的影响,p H和沉淀时间对去除效果影响相对较小,MFPAC对COD和色度的去除效果均优于单独投加PAC,投加量为1.5 g/L时,COD和色度去除率分别达到62.6%和66.5%;采用焙烧法对矿化垃圾进行改性,利用改性矿化垃圾吸附MFPAC混凝出水,在焙烧温度为700℃,吸附剂投加量为40 mg/L的条件下,COD和氨氮的去除率分别为56.7%和68.4%;MFPAC混凝-矿化垃圾吸附联合工艺对垃圾渗滤液COD、色度和氨氮的去除率分别为83.8%、78.5%和74.3%。  相似文献   

12.
饮用水源水突发性镍污染应急处理试验研究   总被引:1,自引:0,他引:1  
模拟水厂现行工艺对含镍污染原水进行处理,当原水中镍质量浓度超过0.03 mg/L时,经处理后无法保证镍去除达标。在水厂现有工艺基础上,通过投加高锰酸钾、助凝剂PAM和调节pH来强化镍的去除,试验结果表明,pH和高锰酸钾投加量是影响镍去除效果的两个主要因素。最佳去除率方案:高锰酸钾投加量为1.5 mg/L,调节pH为9.5,PAC投加量为18 mg/L,PAM投加量为1.0 mg/L。在此条件下处理镍质量浓度为0.1 mg/L的原水,出水剩余镍为0.009 mg/L,去除率达到91%,同时该条件可使质量浓度<0.22 mg/L的镍污染原水处理后达标。高锰酸钾预氧化强化混凝可作为柳江沿岸水厂应对镍污染的一种有效应急处理措施。  相似文献   

13.
为降低水中藻类及有机物含量,利用三维荧光和藻类分析仪,研究KMnO4强化混凝对藻类和类蛋白物质的去除,探索KMnO4投加量和反应时间的影响。研究表明:KMnO4对藻类和藻蓝蛋白的去除率仅为38.46%和15%,KMnO4耦合混凝对两者的去除率分别为86%和75%。铜绿微囊藻中主要荧光组分为可溶性微生物产物和小分子类蛋白,KMnO4耦合混凝对其的去除率为32.77%。结果表明,1 mg/L KMnO4预氧化30 min后投加混凝剂,能最大程度地去除藻类及藻蓝蛋白,但并不能较好地去除类蛋白物质。  相似文献   

14.
采用混凝法对水性油墨废水进行处理,探讨了混凝剂种类及投加量、混凝最佳pH值、助凝剂种类及投加量等因素对混凝效果的影响。结果表明,当混凝剂硫酸亚铁投加量为200 mg/L,助凝剂聚丙烯酰胺投加量为2.5 mg/L,pH值为5,沉降时间为40 min时,处理后的废水色度去除率达97%以上,COD去除率达92%以上。  相似文献   

15.
研究了混凝及芬顿氧化技术处理新疆某油田含油污水。当聚合氯化铝(PAC)及阴离子聚丙烯酰胺(APAM)较佳投加量分别为700 mg/L和1.43 mg/L时,混凝出水COD降低至310 mg/L;芬顿氧化处理混凝后出水,当过氧化氢投加量为0.55 g/L,硫酸亚铁投加量为0.65 g/L时,COD去除率最高约为39%,芬顿处理后出水COD为166 mg/L。  相似文献   

16.
研究了不同技术(强化混凝、活性炭吸附和Fenton氧化)处理高有机含量地下水的效果和可行性,同时采用三维荧光技术表征了不同技术对水中有机物的去除特征.三维荧光分析显示原水存在两个荧光峰:peakl波长区间为λEx/Em=250~280/380~450,peak 2波长区间位于λEx/Em=300~330/390-410,二者均为腐植酸类物质.采用pH调节-强化混凝、活性炭吸附和Fenton氧化均可有效去除水中的有机物.当PAC、活性炭投加量分别为300 mg/L和0.6 g/L时,DOC从17.9 mg/L分别降低到5.99和7.60 mg/L.同样,反应初始pH值为3、过氧化氢投加量为0.5%(V/V)、亚铁和双氧水物质的量比为0.05时,出水DOC降至5.7 mg/L.经处理后,原水色度基本消除.伴随着三种技术的处理,水中荧光强度逐渐削弱,此结果和总有机碳的分析结果表现出良好的一致性.  相似文献   

17.
研究泥渣回流强化混凝工艺对再生水的处理效果.研究结果表明,该工艺应用于再生水处理效果很好,在PAC投加质量浓度为10 mg/L、回流泥渣质量浓度为10 000~16000 mg/L、干泥回流量为200 mg/L时,泥渣回流强化混凝工艺对浊度、TP、PO43-、CODCr 、色度及UV254的去除率分别为71.63%、71.21%、82.00%、36.62%、47.25%、18.85%.  相似文献   

18.
《应用化工》2022,(8):2144-2147
橡胶促进剂NS生产废水采用酸化吹脱-混凝法进行预处理,考察废水pH、吹脱时间以及混凝剂种类、投加量、助凝剂投加量和混凝pH等对COD去除率的影响。结果表明,酸化吹脱-混凝法处理该废水的最佳酸化pH值为3,吹脱时间为120 min;最佳混凝剂为PFS(聚合硫酸铁),投加量1 400 mg/L,混凝pH值为7,助凝剂PAM 14 mg/L。酸化吹脱及混凝处理后,出水COD去除率值为53.75%。  相似文献   

19.
采用臭氧强化混凝的方法对酵母废水二级出水进行深度处理,结果表明,臭氧、三氯化铁投加量分别为120 mg/L、0.5 g/L时,COD去除率为65.0%,与相同投加量下先混凝后臭氧氧化的实验结果相比,COD去除率可提高19.2%,化学污泥产生量可减少50%以上;与单独混凝实验相比,可减少60%以上的混凝剂用量。臭氧强化混凝的吨水处理费用最低,采用氧气源时,吨水处理费为2.5元,分别比先混凝后臭氧氧化和单独混凝减少0.7、1.3元/t。  相似文献   

20.
非均相催化臭氧化深度处理钻井废水的效能研究   总被引:1,自引:0,他引:1  
采用单独臭氧氧化、MnO2吸附和O3/MnO2催化氧化3种体系对经过混凝处理后的钻井废水进行深度处理,重点研究了O3/MnO2催化氧化体系去除钻井废水中有机物(以COD计)的效能。结果表明:相比单独臭氧氧化和MnO2吸附体系,O3/MnO2催化氧化体系能显著提高COD和TOC的去除率;COD去除率随着臭氧投加量和催化剂投加量的增加、pH的升高和反应时间的增加而增大;在臭氧投加量为80 mg/L、pH为11.5、催化剂投加量为20 g/L、反应时间为40 min的最佳工艺条件下,COD和TOC的去除率分别达到87.51%、83.18%,COD从686.28 mg/L降至85.72mg/L,出水达到《污水综合排放标准》(GB 8978—1996)的一级标准要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号