首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对球面、非球面及自由曲面超精密磨削加工用树脂基圆弧形金刚石砂轮难以精密修整的问题,提出基于旋转绿碳化硅(GC)磨棒的在位精密成形修整技术。在分析GC磨棒和圆弧砂轮几何关系的基础上,确定修整过程中圆弧插补轨迹的补偿方法及GC磨棒运动轨迹的设计方案。采用KEYENCE激光测微仪采集砂轮圆弧特征点,表征圆弧砂轮的修整状况。研究不同粒度的GC磨棒、进给深度和圆弧插补速度对圆弧金刚石砂轮修整率和修整精度的影响规律。研究结果表明,该修整方法可根据加工曲率半径要求实现不同圆弧半径砂轮的精密在位修整,修整后可自动消除砂轮垂直方向的位置偏差;采用400#和800#的GC磨棒对D3和D7砂轮均有较高的修整率(0.7~6.7);与400#和1500#的GC磨棒相比,800#GC磨棒更适合粒度为D3和D7圆弧金刚石砂轮的精密修整;相比圆弧插补速度,进给深度对砂轮的圆弧半径尺寸误差和形状误差影响更大,进给深度越小,圆弧半径尺寸误差和形状误差越小;修整后两种砂轮的圆弧半径误差均可控制在5%以内,D3砂轮的形状误差可控制在3μm/4 mm以内,D7金刚石砂轮可控制在6μm/4 mm以内,修整后比修整前形状误差提高14倍左右。  相似文献   

2.
针对球面、非球面及自由曲面超精密磨削加工用圆弧形金刚石砂轮难以精密修整的问题,提出基于旋转绿碳化硅(GC)磨棒的端部在位精密修整方法及修整过程的声发射在线监测技术。基于圆弧形金刚石砂轮的结构特性,制订圆弧形金刚石砂轮的在位精密修整与修整过程的声发射在线监测技术方案。依据修整与在线监测方案,对D64圆弧形金刚石砂轮进行修整实验及其声发射信号采集,修整后跳动误差小于10μm,比修整前减小30μm左右,砂轮精度显著提高。利用声发射信号均方根值获取砂轮修整结束的特征预警阈值,实现了旋转GC磨棒端部在位精密修整过程的在线监测以及修整结束时间的准确判断,可以有效提高球面非球面磨削加工过程的效率。  相似文献   

3.
圆弧形金刚石砂轮的数控对磨成形修整试验   总被引:3,自引:0,他引:3  
针对圆弧形金刚石砂轮精密修整的操作困难和装置复杂的问题,提出一种新的数控对磨成形修整方法.在该成形修整中,金刚石砂轮被驱动沿着圆弧插补运动轨迹与GC磨石对磨,逐渐形成砂轮的圆弧形轮廓,用于超硬材料的曲面磨削.在建立砂轮圆弧形轮廓的数控修整模式的基础上,分析定位误差与修整形状偏差的关系.此外,建立修整精度和修整率的评价指标,进行正交试验,研究修整工艺参数,即砂轮转速、行走速率和进给深度,对修整精度和修整率的影响.对该数控修整模式分析表明,在该数控对磨成形修整中不同半径的砂轮圆弧形轮廓能够被修整成形,可用于不同曲率的曲面磨削.同时,当定位误差在0.1 mm以内时,最大的修整形状偏差不超过5μm/10 mm.成形修整试验结果显示,影响修整精度和修整率的主要修整工艺参数分别为砂轮转速和行走速率.增加砂轮转速可以同时改善修整精度和修整率;增加行走速率会提高修整率,但会降低修整精度.此外,采用适宜的修整工艺,目标形状误差和目标修整率可以分别达到25.1μm/8mm和7.31x10-3mm3/mm3,分别提高修整精度2~3倍和修整率约7倍.  相似文献   

4.
针对圆弧形超硬砂轮修整难度大、修整精度低的问题,对树脂结合剂圆弧形金刚石砂轮进行了精密修整研究。设计制造了一种垂直式超硬砂轮圆弧修整器,通过修整试验研究了不同粒度的圆弧形砂轮在修整前后表面粗糙度、弧形精度、圆度、表面形貌的变化情况。砂轮修整前后对氮化硅陶瓷轴承套圈沟道进行了磨削,并测量了磨削后的轴承套圈沟形精度。研究结果表明:相比修整前,修整后砂轮表面粗糙度平均值由1.731 8 μm减小至0.772 4 μm,减小了55.4%;弧形精度平均值由33.604 7 μm减小至8.527 6 μm,减小了74.6%,修整后4个砂轮的弧形精度更加稳定,且随着砂轮粒度的减小,弧形精度略有减小趋势;砂轮圆度平均值由43.721 μm减小至18.002 μm,减小了58.8%,修整使大量新的磨粒露出。所设计的垂直式超硬砂轮圆弧形修整器可对圆弧砂轮进行精密修整,可改善圆弧形砂轮的弧形精度及圆度,修整后砂轮磨削的轴承套圈沟形精度得到了大幅提高。  相似文献   

5.
重点研究了传动机构齿轮精密制造技术中,硬质合金插齿刀磨削用碟形金刚石砂轮的内侧进给、外侧进给和交替进给修整方式,对砂轮整形精度的影响规律,进一步分析了不同进给方式修整后的碟形砂轮磨制硬质合金插齿刀时,对插齿刀齿形精度的影响,同时采用粉末冶金棒、GC杯形砂轮、D/GC杯形砂轮3种修整方法,修整碟形金刚石砂轮,与原有修整方法进行对比试验,使修整后的碟形砂轮磨制整体硬质合金插齿刀而获得的齿形精度,分别提高了2.3倍、2.6倍和5.3倍。  相似文献   

6.
针对深凹非球曲面器件及半球谐振子超精密磨削中使用的小直径金属基球头金刚石砂轮,提出一种基于电火花修整原理的精密修整方法.从理论上分析机械误差及修整参数对砂轮修整后面形精度的影响,基于理论分析结果研制金刚石球头砂轮电火花修整装置.通过正交试验研究修整参数对砂轮面形精度的影响规律,得到最优电火花修整参数.试验结果表明,修整后的砂轮面形精度优于0.8 μm,磨粒突出效果良好,可以满足半球谐振子及其他光学零件超精密磨削中砂轮修整需要.  相似文献   

7.
青铜结合剂微粉金刚石砂轮常用于脆硬材料的超精密磨削加工,但其修整十分困难;采用内冲式弧面铜钨电极对W10青铜结合剂微粉金刚石砂轮进行了电火花修整试验研究;搭建试验平台并设计三种不同弧度的内冲式电极,采用超景深三维显微镜、精密粗糙度仪、CCD激光位移传感器以及扫描电子显微镜,对修整后的砂轮进行了表面形貌检测、轮廓检测和磨削性能测试;检测结果表明60?弧面电极的内冲效果最好,修整砂轮表面磨粒突出明显,数量较多且密集度高,金刚石磨粒保存完好;砂轮圆跳动误差值最小,可达1.7?m、1.8?m、1.8?m;试验验证了采用60?弧面电极修整砂轮的磨削性能最好,加工的试件表面粗糙度可达Ra2.273 nm,已基本达到超精密镜面磨削的质量。  相似文献   

8.
针对大直径凸弧金刚石砂轮硬度高、表面形貌复杂、修整难度大以及修整弧形精度低的问题,提出了一种应用于大直径凸弧金刚石砂轮立式精密挤压修磨的砂轮修整方法,设计研发了大直径超硬凸弧砂轮立式在线精密修整装置。其基本原理是高强度金刚石凸弧修整轮自转并进行立式圆弧摆动形成约束圆弧面,通过金刚石凸弧修整轮与金刚石砂轮磨粒之间产生的挤压微磨削作用对金刚石砂轮进行精密修磨成型。对基本修整工艺规律进行了研究分析与初步试验探索。通过金刚石砂轮修整前后磨削全陶瓷球轴承内圈的沟道精度对比分析表明,该砂轮修整理论、修整装置与修整工艺能够实现大直径凸弧微粒度金刚石砂轮精密修整,并达到所需修整的精度要求。  相似文献   

9.
高速/超高速成型磨削技术作为航空发动机、精密齿轮和5G智能等国之重点工程,超硬材料电镀砂轮已经成为其不可或缺的工具之一。受国外技术封锁影响,加之我国电镀砂轮起步晚,目前我国电镀砂轮技术落后。其重要原因为缺乏专业精密整形装备,制造精度低,严重制约了其工业化应用。攻克电镀砂轮复杂型面精密整形技术,突破技术封锁,对于推动高速/超高速成型磨削技术工业化,提升航空航天、军事等行业复杂型面关键零部件制造精度,保证国家安全等方面地位有着重要指导意义和战略意义。查阅了国内外超硬材料制品修整技术,分析了超硬材料电镀砂轮轮廓特征以及修整机理,揭示了目前电镀砂轮复杂型面精密整形存在的技术壁垒。通过分析现阶段业内相关修整设备,推导出“硬修整”是目前保证砂轮轮廓的可靠工艺手段。并指出未来修整装备应走定制化道路,并重点从精密对刀技术、修整干涉CNC干预技术、工具砂轮损耗规避/量化补偿等方面开展专用设备研发。同时指出激光烧蚀工业化是未来超硬材料修整的重点研究方向之一。  相似文献   

10.
针对小直径、深凹非球光学曲面超精密磨削中使用的铸铁基金刚石球头砂轮,提出了一种基于电火花加工原理的精密在位修整方法。只要改变工具电极直径,即可对不同直径的球头砂轮进行修整。实验表明,用该方法修整出的铸铁基金刚石球头砂轮具有良好的精度和高等微刃群,可很好地满足小直径、深凹光学零件的超精密磨削加工要求。  相似文献   

11.
金刚石微粉砂轮超精密磨削技术   总被引:7,自引:0,他引:7  
论述了金刚石微粉砂轮超精密磨削的特点、存在的技术难题及其发展前景。对金刚石微粉砂轮超精密磨削机理进行了探讨,认为它是以微切削为主的多种作用的融合;研究了金刚石微粉砂轮修整机理及其常用的有效修整方法;提出了树脂-金属复合结合剂金刚石微粉砂轮的构想,论述其结构的形成、制作过程及其实际磨削效果;最后,探讨了进行金刚石微粉砂轮超精密磨削时的影响因素及环境条件。  相似文献   

12.
金属基超硬磨料砂轮耐磨及刚性好,但整形、修锐困难。本文介绍对金属基超硬砂轮的电火花修整、接触式电火花放电修整及电解放电修整,并着重介绍电解-机械循环复合精密修整技术。机械修锐金属基砂轮.磨料后面留有隆起的金属形成磨粒尾部,在磨削时会增加磨粒的粘附强度,可防  相似文献   

13.
对金刚石微粉烧结棒修整树脂结合剂金刚石砂轮进行了试验研究。以反映砂轮平面度的端面跳动和径向跳动作为修整效率的评价依据 ,通过试验对比了主轴转速、砂轮组织参数和修整棒进给速度对砂轮修整效率的影响 ,认为低主轴转速下修整棒对金刚石砂轮的修整效率较高、砂轮参数对修整效率的影响很小以及修整棒进给速度与修整效率呈非线性关系  相似文献   

14.
因受到激光高斯光束特性的影响,辐照在砂轮表面上的光斑大小和激光能量都跟随修整路径变化,难以实现高精度的弧形金刚石砂轮的修整,为此,提出采用激光粗修整和电火花精修整的复合修整方法。先用激光修整高效去除多余磨料层来得到弧形轮廓,再用一高精度弧形电极匹配该轮廓进行电火花修整,得到较高精度的弧形砂轮。在粒度为120的金刚石砂轮上试验修整半径为13 mm的弧形轮廓,最终修整出的弧形轮廓半径为13.006 mm,轮廓误差PV值为10.90 μm。最后,通过磨削氧化铝陶瓷验证了砂轮修整效果。检测磨削工件的弧形轮廓拟合半径为13.012 mm,轮廓误差PV值为11.33 μm。  相似文献   

15.
大尺寸光学玻璃元件主要采用细磨粒金刚石砂轮进行精密/超精密磨削加工,但存在砂轮修整频繁、工件表面面形精度难以保证、加工效率低等缺点。采用大磨粒金刚石砂轮进行加工则具有磨削比大、工件面形精度高等优点,然而高效精密的修整是其实现精密磨削的关键技术。采用Cr12钢对电镀金刚石砂轮(磨粒粒径151 μm)进行粗修整,借助修整区域聚集的热量加快金刚石的磨损,可使砂轮的回转误差快速降至10 μm以内。结合在线电解修锐技术,采用杯形金刚石修整滚轮对粗修整后的电镀砂轮进行精修整,砂轮的回转误差可达6 μm以内,轴向梯度误差由6 μm降至2.5 μm。通过对修整前后的金刚石砂轮表面磨损形貌成像及其拉曼光谱曲线分析了修整的机理。对应于不同的砂轮修整阶段进行熔融石英光学玻璃磨削试验,结果表明,砂轮回转误差较大时,工件材料表面以脆性断裂去除为主;随着砂轮回转误差和轴向梯度误差的减小,工件表面材料以塑性去除为主,磨削表面粗糙度为Ra19.6 nm,亚表层损伤深度低至2 μm。可见,经过精密修整的大磨粒电镀金刚石砂轮可以实现对光学玻璃的精密磨削。  相似文献   

16.
针对超硬磨料砂轮存在修整困难的问题,基于金刚石和普通材料在强度上存在巨大差异的特点,提出了一种在金刚石型面约束下将磨粒挤压和修磨相结合的修整方法,其基本原理是:表面有精密形状的金刚石工具通过高速旋转生成具有约束能力的高强度型面,型面通过约束自由磨粒对被修砂轮产生挤压划擦作用破坏砂轮结合剂完成砂轮高效修形,同时通过修整工具高强度金刚石磨料的微研削作用对被修砂轮型面进行进一步精密修磨。对约束型面的形成及自由磨粒在型面约束下挤压和研削作用机制进行了分析,并介绍了挤磨修整系统的构成和特性,对修整力、修磨速度和自由磨粒等参数影响规律进行了初步试验探索,结果表明,自由磨粒型面约束下的挤压能够实现超硬磨料砂轮的快速成形精密修整。  相似文献   

17.
应用超硬大磨粒金刚石砂轮实现BK7光学玻璃的超精密磨削   总被引:1,自引:0,他引:1  
首先以91μm磨粒杯形铜基金刚石砂轮作为修整器并结合砂轮在线电解修锐技术(ELID,Electrolytic in- process dressing)对151μm磨粒电镀镍基单层金刚石砂轮进行精密高效的修整。在最佳的修整参数下,同时应用测力仪对两个砂轮间磨削力进行监测,并应用共轴光学位移检测系统对砂轮表面状态进行在位监测,151μm砂轮的回转误差被减小至1~2μm范围,同时砂轮上所有金刚石磨粒被修整出平坦表面并拥有恒定的圆周包迹,此时砂轮达到最佳工作状态。然后应用被良好修整的砂轮对光学玻璃BK7进行磨削加工。磨削试验结果和亚表层完整度评价结果表明新开发的大磨粒金刚石砂轮修整技术的可行性,也验证大磨粒金刚石砂轮只要经过精密修整是可以应用于光学玻璃的延展性超精密磨削加工的,并能实现纳米级的表面粗糙度,显示出大磨粒金刚石砂轮在加工难加工材料和硬脆材料中的良好应用前景。  相似文献   

18.
对金刚石微粉烧结棒修整树脂结合剂金刚石砂轮进行了试验研究.以反映砂轮平面度的端面跳动和径向跳动作为修整效率的评价依据,通过对主轴转速、砂轮组织参数、修整棒进给速度3个方面进行对比试验,得出了以下结论:低主轴转速下修整棒对金刚石砂轮的修整效率较高,砂轮参数对修整效率的影响很小以及修整棒进给速度与修整效率呈非线性关系.  相似文献   

19.
介绍了一种新型的碟形超硬磨料砂轮修整器。该修整器采用SiC和金刚石磨料杯形砂轮作为修整工具可以对刚性较差的大直径碟形超硬磨料砂轮完成修形和修锐工作,并利用变频器实现修整时的无级调速以达到最佳修整效果。通过以修整力为研究对象对修整器的系统工作稳定性进行了实验研究,得出该新形修整器的工作稳定性好,可以满足超硬磨料碟形砂轮的精密修整工艺要求。  相似文献   

20.
在多坐标联动的轮廓控制系统中,由于零件的形状比较复杂,在线、在位检测的误差补偿方法难于应用。本文提出了一种误差补偿新方法——脉冲合成法,并把这种方法应用到一种CNC成形砂轮修整系统中,使砂轮修整精度达到0.005mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号