首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
采用有限元软件ABAQUS建立了盾构隧道三维有限元分析模型,模拟了盾构施工的整个过程。利用添加移除技术以及设置场变量等方法实现了开挖面土体卸荷、管片拼装以及注浆等施工过程,研究了盾构开挖过程中地表沉降的规律,分析了不同土仓压力对地表沉降的影响,探讨了盾构施工微扰动控制要点。计算结果表明,盾构开挖面前方地表出现隆起,且随着开挖面的前移而前移,隧道轴线地表在开挖结束后呈隆起趋势。地表横向沉降量随土仓压力的增大而增大,表现为隆起趋势,隧道轴线与两侧土体沉降量差值随着土仓压力的增大而减小。  相似文献   

2.
对现有的随机介质理论进行拓展,引入适用范围更广的沉降槽宽度系数取值方法,通过对上线和下线盾构隧道分别计算再叠加的方法,建立重叠盾构隧道施工引起的土体变形计算方法,可以计算地表沉降、深层土体沉降和水平位移,将实测数据与计算结果进行对比。结果表明文中方法计算结果与实测数据比较吻合,具有可靠性;重叠盾构隧道施工引起的地表沉降呈V形;重叠盾构隧道施工引起的土体变形都在隧道轴线处达到最大值;随着深度增加,在隧道上方处的土体变形增大;盾构机在离开开挖面1.5倍上线隧道埋深后,沉降基本稳定,离开开挖面2倍上线隧道埋深后沉降不再增加;由于重叠盾构隧道上下线隧道埋深不同,两条隧道的关键参数取值也不同。  相似文献   

3.
隧道开挖引起的地层位移历来是学术界和工程界所关注的热点问题。首先,阐述了盾构隧道开挖引起地层位移的传统计算理论,对国外5条经典盾构隧道实例进行了计算和对比,分析结果表明:Peck经验公式、Yoshikoshi法和Celestino法拟合精度均较高;Loganathan和Poulos法计算得到的最大沉降值略小于实测值;Sagaseta法与Verruijt和Booker法的计算结果几乎相同,最大沉降量均明显偏低;Park浅埋法计算结果与实测值较为吻合。其次,基于多条盾构隧道的地表沉降实测数据,得到了地表沉降槽宽度系数is的修正拟合公式,该公式表明:is与隧道的开挖半径R、埋深h和土质条件(土体内摩擦角φ)有关,且与R+h tan(45°-φ/2)呈线性关系;此外,对多组盾构隧道深层土体沉降实测数据进行统计分析,获取了深层土体沉降槽宽度系数iz的修正拟合公式,该公式表明:iz与地表沉降槽宽度系数is之比iz/is,同该土层深度hz与隧道上覆土层厚度T之比hz/T之间呈对数函数关系。实例对比分析结果表明:地表和深层土体沉降槽宽度系数修正拟合公式均能较好地预测地层变形。  相似文献   

4.
盾构隧道施工引起地表沉降的传统计算方法已较为成熟,但为了合理描述盾构隧道施工引起地表沉降的多种不确定性,应同时考虑随机和模糊两种因素所带来的影响。基于Peck算式,并考虑影响地表沉降因素的随机性和模糊性,利用一次二阶矩法建立隧道施工引起地表沉降的可靠度算式,并针对工程实例,对盾构隧道地表沉降模糊随机可靠度进行计算分析。计算结果表明:对于同一允许最大沉降量,在不考虑变量随机性和模糊性的情况下,中心点法计算得到的可靠指标较验算点法偏大;随着允许沉降量的递增,中心点法和验算点法计算所得的可靠指标均呈现增大趋势,这与工程实际是一致的;而考虑随机性和模糊性因素影响的验算点法所得可靠指标呈下降趋势。通过与传统随机可靠度计算结果进行对比,得到了更为合理的结果。  相似文献   

5.
 广州市轨道交通6#线东山口站左线站台隧道采用盾构先行过站后扩挖方案修建,地面环境复杂,且建筑物桩基所处地层含水量高、孔隙比大,盾构隧道扩挖施工易引起较大地面沉降。应用数值模拟方法对扩挖施工诱发地层失水引起的地表沉降以及现场扩挖施工变形控制措施的实施效果进行预测,并且运用叠加原理将得到的最终地表沉降与实测数据进行对比分析。结果显示:地层失水沉降及扩挖施工沉降比例为2∶3;盾构隧道台阶法扩挖上台阶施工地表沉降量较大,两台阶两部与两台阶四部扩挖法地表沉降差别不大,盾构扩挖法修建左线站台隧道最大地表沉降为右线CRD法站台隧道的65%;拱部大管棚、袖阀管注浆复合超前预支护增加了地表沉降槽宽度,减小了地表沉降量及倾斜;盾构轴线偏移方案减小了围岩塑形区范围,更好地发挥拱部超前预支护的效果。  相似文献   

6.
双圆盾构隧道土体地表沉降特性   总被引:6,自引:0,他引:6  
介绍了双圆盾构隧道这种新型隧道形式,与圆形盾构隧道相比,双圆盾构隧道具有占用地下空间小、施工效率高、掘削土量少等优点,但双圆盾构隧道引起的土体位移相对较大,影响范围也比较广。基于双圆盾构隧道的施工特点,通过计算圆形盾构的土体地表沉降,运用土体位移叠加法,研究了双圆盾构隧道引起的土体地表沉降的特性,建立了双圆盾构隧道直径、埋深和地层损失等因素与土体地表沉降的关系。结果表明:双圆盾构隧道的地表沉降槽的形态与圆形盾构隧道相似;双圆盾构隧道的地表沉降量大,影响范围广;双圆盾构隧道的地表沉降与埋深和直径之比有关。  相似文献   

7.
为揭示盾构施工过程对地表沉降的影响,以某地铁东部市场至拱星墩区间盾构施工工程为背景,运用ABAQUS对不同土质、土体相关参数、盾构推进进尺、上部结构刚度进行数值模拟分析,通过改变参数数值,研究地表沉降规律。试验结果表明:不同土质的地表沉降曲线区别较大,其本质是各类土体相关参数的不同引起的地表沉降差异;地表竖向沉降值随着土体力学参数的增大而逐渐减小;随着盾构推进距离的增加地表竖向沉降值在增大,并且呈一定的线性关系;在沉降槽宽度系数以内,地表竖向沉降值随着土体上部建筑物结构刚度的增大而逐渐减小;在沉降槽宽度系数以外的一定范围内,地表竖向沉降值随着土体上部建筑物结构刚度的增加而逐渐增加。  相似文献   

8.
韦生达  姚佩仪  彭鑫  龚杰  吕岩  张书建 《建筑技术》2021,52(11):1331-1334
以成都高漂石含量砂卵石地层为研究对象,采用PFC2D模拟了双线隧道盾构掘进时对砂卵石地层的扰动规律,并通过Midas有限元模拟分析了双线隧道盾构掘进时的地表沉降规律.结果 表明砂卵石地层在掘进过程中将形成一个倒三角的松动区,并引起掌子面前方土体向此区域移动,最终形成楔形移动面;同一里程处隧道引起的地表沉降随着盾构推进呈增大趋势,根据监测数据显示,地表沉降规律与模拟结果基本一致;双线盾构施工时,左右两侧的地表沉降相互影响,最大沉降位置将随着开挖方向发生偏移,并呈中心轴线沉降量最大,两侧地表沉降亦呈现出基本对称分布的规律.  相似文献   

9.
隧道开挖引起的地表变形是工程安全的重要指标,基于管棚注浆隧道开挖引起的地层受力分析,将地表变形影响因素分为注浆压力、附加荷载和地层损失,并引入Mindlin解和Peck公式,获得了隧道引起的地表变形计算公式。通过对地表变形特征进行分析,结果表明:岩土力学参数对地表变形最大值有显著影响,但对沉降影响宽度影响甚微;沉降槽宽度、地层损失率和沉降宽度与沉降槽宽度比值(I/i)均随内摩擦角和黏聚力增大而减小,弹性模量对沉降槽宽度几乎没有影响,随弹性模量增大,沉降槽宽度稳定在7.6~7.9,地层损失率迅速减小并在1.2‰左右趋于稳定,I/i则迅速增大并稳定在3.0左右。隧道参数对沉降最大值和沉降影响宽度均有显著影响,且影响幅度没有减缓的趋势;在单一地层中,随着埋深增加,沉降槽宽度、地层损失率均呈直线增大,I/i值先增大后减小;随洞径增大,沉降槽宽度呈线性增大,地层损失率呈线性减小,I/i值先增大后减小,最大值为3.1左右。  相似文献   

10.
北京地铁6号线南~东区间工程为北京地区首例叠落盾构隧道工程。针对该工程,本文通过数值模拟与现场实测相结合的研究手段,对叠落盾构隧道施工产生的地层变形及结构受力进行分析,得到以下结论:叠落盾构隧道开挖产生的地层沉降具有不对称性,最大沉降值位于两隧道中心线附近,地表沉降槽宽度较单线隧道减小,沉降值增大,使得土体及地表结构更易发生破坏;下行隧道施工地层损失率大于上行隧道,深部土体产生向隧道内侧变形,且两侧最大水平变形位于下行隧道拱顶上方;叠落盾构隧道施工使得两洞拱腰最大弯矩向两隧道连线方向偏转,下行隧道拱顶弯矩增大,需要在结构设计中引以注意。  相似文献   

11.
文章通过分析成都地铁3号线、7号线区间盾构隧道的地表沉降监测数据,采用FLAC3D软件进行数值模拟计算,研究在砂卵石地层中盾构隧道地表沉降值的分布规律、盾构隧道掘进的主要影响范围及盾构掘进参数总推力、刀盘扭矩、出土量对地表沉降的影响规律,为盾构隧道施工和监测提出建议。  相似文献   

12.
为研究浅覆土砂卵石地层中土压平衡盾构施工对地表沉降的影响,本文以北京地铁新机场线2号风井-3号风井区间盾构施工为背景,采用FLAC3D有限差分软件进行数值模拟计算,结合实测数据,对10 m覆土厚度下左、右线盾构不同线间距、不同前后间距条件下盾构施工造成的地表沉降规律进行了研究。结果表明:随着隧道左右线间距增大,隧道上方的地表沉降先减小,间距增大至1.5D(D为开挖直径)后,地表最大累计沉降量不再随间距增大而变化,间距大于3.0D后,左右线施工不再相互影响;盾构施工纵向的影响范围约为32 m,前后施工间距小于48 m时左右线纵向影响范围重叠,前后施工间距越小,开挖造成的地表沉降值越大,前后间距大于48 m后,左右线施工不再相互影响。  相似文献   

13.
鉴于近距离空间交叉盾构隧道的特点,文章以武汉地铁某近距离空间交叉盾构隧道为研究背景依托,利用MIDAS有限元软件,建立了近距离空间交叉盾构隧道三维数值模型,开展了近距离交叉盾构隧道的力学特性研究。结果表明近距离空间交叉盾构隧道开挖引起的地表沉降在空间交叉部位形成了沉降叠加;上部隧道的开挖施工对地表的沉降影响相对下部隧道开挖较大,且沿隧道纵向形成了一定范围的地表沉降的贯通区域;开挖后上部及下部隧道位移均在交叉部位的拱底最大;开挖施工会释放隧道的拱顶和拱底的土压力,但拱顶的释放大小和范围均大于拱底。研究结果可为近距离空间交叉盾构隧道设计和施工提供参考。  相似文献   

14.
蔡浩明 《低温建筑技术》2022,44(1):149-153,157
盾构隧道开挖受地质影响较大,不同地区不同土层开挖会导致其盾构施工引起的地层损失率η和地表沉降槽宽度系数K也不同,导致其施工经验难以完全借鉴.文中以杭州地铁8号线一期SG8-2标中文桥区间风井-桥头堡站盾构区间为工程背景,对该地区的盾构施工引起的实测数据进行分析,得到该地区的地层损失率η和地表沉降槽宽度系数K;并对盾构施...  相似文献   

15.
城市地铁盾构隧道的横向变形特点是确定工程影响区域和影响范围的重要依据。对我国22个建设城市的58条地铁线路、126个区间、964个地表横向沉降槽资料进行分析,研究了地铁双线盾构区间隧道的地表横向变形特点。根据地层条件的不同,对不同地层区域的沉降槽Peck公式拟合参数进行统计分析,得出了地层损失率和宽度参数的分布形态、相关统计值以及与隧道相对埋深的相关性。研究结果表明:(1)地层损失率和宽度参数的数理统计结果可以很好地指导不同地层区域地铁双线盾构隧道工程的影响区划分和影响范围的确定;(2)建议各地结合地层条件特点,对地表沉降槽进行深入研究,以提出更为适宜的地表横向沉降槽预测参数。  相似文献   

16.
针对软土地质条件下宁波市轨道交通工程1号线一期工程,在分析研究其隧道盾构区间监测数据的基础上,得到了盾构推进后的地层损失率及地表沉降两项指标的变化规律,掌握了土层性质不同和隧道埋深不同对地层损失率的影响特征,以及软土地区地下盾构隧道施工引起的一般地表工后沉降水平,验证并得到了沉降槽半宽度与隧道中心线埋深之间的线性关系,得到了盾构隧道推进对周围土层的影响范围以及沉降槽半宽度的一般取值范围,这些工程施工本体结构及周边环境的主要变形规律,可以对预警管理、指标体系的补充完善提供依据,并对新建地下轨道施工结构的安全管理提供借鉴。  相似文献   

17.
潜水和承压水是地铁软土区间盾构隧道施工过程中的主要危险源,为研究潜水水位变化和承压水水压变化对区间隧道施工的影响,采用FLAC3D软件,选用修正剑桥模型,对不同潜水水位和承压水头作用下盾构隧道的地表沉降、衬砌内力等进行分析。研究结果表明,当隧道洞身全部位于地下水中时:(1)潜水条件下,考虑渗流时地表最大沉降量比不考虑渗流时增大约50%;盾构隧道最大地表沉降与潜水水位呈线性关系;(2)承压水条件下,考虑渗流时地表最大沉降量比不考虑渗流时增大约10%,盾构隧道最大地表沉降与承压水头不成线性关系,随着承压水头的增大,地表最大沉降的增长速率越来越大;(3)潜水水位从-6.8 m变化到-2.8 m及承压水头从8 m变化到12 m的过程中,隧道衬砌管片弯矩和轴力随着潜水水位的升高或承压水头的增大而逐渐减小。  相似文献   

18.
洪卓众 《城市勘测》2018,(2):157-160
通过对地铁盾构施工引起的地表沉降监测数据进行分析,得出地表横向沉降规律基本符合Peak沉降理论,地表纵向沉降规律基本成平稳下降趋势。通过对地表监测点右线隧道盾构通过时影响的累计沉降数据进行数学建模,预测左线隧道盾构通过对地表的沉降影响,预测结果准确。得出在同等地质条件及施工参数下隧道盾构施工对地表的扰动规律,在实际工程中具有重要的指导意义。  相似文献   

19.
重叠隧道施工数值分析   总被引:1,自引:1,他引:1  
以佛山地铁莲塘-张槎盾构区间重叠隧道为工程依托,运用MIDAS/GTS有限元程序模拟盾构开挖的全过程,采用不加固和地面加固两种施工工况,分析不同工况下重叠隧道施工对地表沉降和盾构管片内力影响,结果表明:地层受盾构施工的影响范围都逐步扩展,地表沉降曲线符合Peck沉降槽规律。地面加固后地表最大沉降量约为18.8mm,未加固地表最大沉降量约为102.3mm。洞内注浆加固后能够减小盾构管片内力。  相似文献   

20.
针对太原地铁2号线双塔西街站-大南门站区间隧道近距离侧穿太原公交公司住宅楼盾构施工存在的巨大安全隐患,运用MIDAS/GTS软件对左、右线隧道先后开挖贯通后,隧道周围地层变形情况及桩基础沉降、侧移进行了预测分析。结果表明:盾构隧道开挖贯通后地表沉降符合Peck沉降槽规律;隧道开挖引起土体变形进而使得桩基发生沉降,且桩基上下部分发生相反方向的侧移;模拟计算值与监测值较吻合,可采用该计算结果研究并指导施工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号