首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以河砂最紧密堆积空隙率为基础,提出了一种活性粉末混凝土(RPC)的配合比设计方法,并进行了试验验证和配合比优化。结果表明,河砂RPC的流动度随浆体富余系数的增大而增大,随水胶比的降低而减小;河砂RPC的抗压强度随浆体富余系数增大和水胶比的降低而增大;河砂RPC的抗折强度受浆体富余系数和水胶比的影响较小。胶凝材料的比例对河砂RPC各个性能的影响大小是:流动度抗压强度抗折强度。掺入玄武岩纤维后,河砂RPC的抗压、抗折和劈裂抗拉强度均不同程度增大,但随着水胶比的降低,纤维对RPC力学性能提升的效果减弱。试验制备出了满足GB/T 31387—2015《活性粉末混凝土》要求的RPC120和RPC140。  相似文献   

2.
利用正交实验、Dinger-Funk连续分布理论等进行活性粉末混凝土(RPC)配合比设计,探究了不同配合比设计方法所制备的活性粉末混凝土的物理力学性能。研究结果表明,活性粉末混凝土的力学性能是物理堆积和化学反应的共同作用,单纯利用紧密堆积原理无法制备出高强度的活性粉末混凝土;对惰性材料含量较多的多组分材料应用Dinger-Funk连续分布理论,很难制备出力学性能优异的RPC材料;利用石英砂的紧密堆积+粉体材料的Dinger-Funk连续分布理论模型,再控制适当的砂胶比,可以配制出力学性能更优的活性粉末混凝土;影响RPC抗折强度和抗压强度的因素不同,RPC抗折强度和抗压强度不存在正相关的关系。  相似文献   

3.
利用正交试验研究了水胶比、砂灰比、石英粉掺量、硅灰掺量、粉煤灰掺量和钢纤维掺量对活性粉末混凝土(RPC)抗折强度和抗压强度的影响。通过较少的试验次数获得了RPC的较佳配合比。  相似文献   

4.
为研究RPC各组分与其抗冻性能之间的关系,通过设计正交试验,探讨了水胶比、硅灰水泥比、钢纤维掺量等因素对普通混凝土和活性粉末混凝土冻融性能的影响。研究指出,在RPC抗冻性的诸多影响因素中,水胶比是最主要的影响因素,其次是硅灰水泥比,最后是钢纤维掺量。  相似文献   

5.
研究了集料对活性粉末混凝土(RPC)性能的影响,包括细集料的类型、颗粒级配,以及微集料(石英粉)颗粒级配对 RPC抗折、抗压强度和流动性的影响。结果表明:剔除细集料中的粗颗粒后,通过优化颗粒级配,可以采用普通河砂代替石英砂或者标准砂作为配制 RPC的细集料;选用325目石英粉作为微集料,采取蒸汽养护制度,可制备出抗压强度大于135 MPa、抗折强度约为20 MPa的活性粉末混凝土。  相似文献   

6.
对粒化高炉矿渣代砂活性粉末混凝土和普通石英砂活性粉末混凝土做了对比配合试验。基于骨料紧密堆积理论和最小需水量法,初步设计配合比并进行试验研究,讨论了粒化高炉矿渣代砂活性粉末混凝土的配合比和力学性能,得到粒化高炉矿渣代砂活性粉末混凝土较优配合比。试验结果表明,基于骨料紧密堆积理论和最小需水量法可以获得较合适的粒化高炉矿渣RPC配合比。粒化高炉矿渣紧密堆积密度略低于石英砂,但经过合理的配合比设计后,粒化高炉矿渣RPC可以具有优于石英砂RPC的力学性能;砂胶比对粒化高炉矿渣RPC的抗压强度影响较大,可以通过减少砂胶比和增加硅灰掺量来改善粒化高炉矿渣RPC的性能。  相似文献   

7.
作为活性粉末混凝土(RPC)道砟槽板首次应用于蒙冀铁路的前期准备工作,笔者对既有京沪高速铁路用RPC电缆槽盖板进行了抗弯承载力试验研究,探讨了其受力变形性能,并且就钢纤维分布对试件的抗弯性能的影响做了简要描述。试验表明:活性粉末混凝土盖板满足承载力要求,相对于普通混凝土,活性粉末混凝土具有良好的延性,混凝土构件破坏形式属于延性破坏。试验同时发现钢纤维的掺量以及分布情况是影响活性粉末混凝土延性的重要因素。  相似文献   

8.
RPC200的强度及收缩影响研究   总被引:2,自引:2,他引:2  
研究了水泥强度等级、火山灰质粉末材料 (粉煤灰、硅粉 )掺量以及养护条件对抗压强度达 2 0 0MPa的活性粉末混凝土 (RPC2 0 0 )强度的影响规律 ;初步探讨了不同条件下RPC2 0 0的收缩随龄期的变化 ,并分析了其自收缩与干缩的关系  相似文献   

9.
活性粉末混凝土(RPC)是一种具有高强度、高密度性、高韧性、低孔隙率、高耐久性等优良性能的水泥基复合材料,应用前景广阔。文中采用地产材料,考虑不同掺合料、掺合量以及养护时间方式和养护时间的影响,得到RPC抗压强度、流动度与各个组成成分、养护方式及蒸汽养护天数之间的变化规律,优化了配和比。  相似文献   

10.
对120个经20~900℃作用后、尺寸为70.7mm×70.7mm×228.0mm的混杂纤维活性粉末混凝土(RPC)试件进行了单轴受压试验,分析了纤维掺量和经历温度对混杂纤维RPC轴心抗压强度、弹性模量、峰值应变和受压应力应变曲线的影响.结果表明:相同高温作用后,钢纤维掺量为1%(体积分数)的混杂纤维RPC抗压强度最低,而钢纤维掺量为2%,聚丙烯纤维掺量不同的混杂纤维RPC抗压强度差别不大;轴心抗压强度和弹性模量随经历温度的升高先增大后减小,且弹性模量下降速度比抗压强度快;经历温度为600℃时,峰值应变达到最大值,且峰值点前应变迅速增大,峰值点后呈线性减小.通过回归分析,建立了抗压强度、弹性模量和峰值应变随温度变化的计算公式,提出了用五次多项式和有理分式表达的混杂纤维RPC应力应变曲线方程.与普通混凝土和高强混凝土相比,混杂纤维RPC具有更优越的抗高温性能.  相似文献   

11.
掺纳米二氧化硅的RPC单轴受压力学性能   总被引:1,自引:0,他引:1  
为研究不同骨料、纳米二氧化硅和钢纤维掺量对活性粉末混凝土峰值应力、峰值应变、弹性模量、横向变形系数等基本力学件能参数及应力应变关系的影响规律,在MTS试验机上对活性粉末混凝土棱柱体试件进行了单轴受压试验.试验结果表明:纳米二氧化硅的掺入可有效地提高活性粉末混凝土的抗压强度和峰值应变,在0.16水胶比下其轴心抗压强度可达172 MPa;标准砂对活性粉末混凝土抗压强度及变形能力的贡献比普通河砂大;在较小水胶比条件下,钢纤维掺量的增加反而会降低活性粉末混凝土的抗压强度,但对峰值应变的提高有一定贡献.  相似文献   

12.
研究了常压90℃蒸汽养护下不同配合比对活性粉末混凝土(Reactive Powder Concrete,简称RPC)强度的影响.试验结果表明:常压90℃蒸汽养护下通过优选组分,能配制出抗压强度为200 MPa的RPC,抗折强度接近40 MPa.  相似文献   

13.
客运专线工程利用RPC的超高强度、高韧性和高抗拉强度生产人行道挡板、盖板等薄板结构,RPC组份一般包括水泥、石英砂、钢纤维、专用掺合料和减水剂,导致RPC成本偏高。本文通过在哈大客专铁路工程中进行的薄板结构RPC配合比试验研究,确定影响RPC活性粉末混凝土质量的主要因素,建议用河沙取代石英砂,硅灰取代特殊掺合料,确定薄板结构RPC配合比。  相似文献   

14.
王震宇  王俊亭  袁杰 《混凝土》2006,(6):80-82,85
研究减水剂品种及成型技术对活性粉末混凝土(RPC)强度的影响,考察水胶比、粉煤灰、硅灰、石英粉以及钢纤维掺量对RPC的抗折、抗压强度及流动度的影响规律.结果表明,采用粉煤灰替代部分水泥,可以改善RPC的流动度及强度,在热水养护下,可配制出抗压强度超过200MPa的活性粉末混凝土.  相似文献   

15.
活性粉末混凝土RPC是近20年发展起来的一种超高强度混凝土。根据国内外对于RPC的研究,介绍了活性粉末混凝土RPC技术发展现状,从原材料性质及配比、机械加压过程、加热养护、钢纤维增韧等角度综合叙述了RPC的制备技术。  相似文献   

16.
在满足客运专线活性粉末混凝土(RPC)材料人行道挡板、盖板技术要求前提下,并在保证构件生产工艺的情况下,试验研究了水胶比、硅灰、石英粉以及钢纤维掺量对RPC混凝土工作性能及抗压强度的影响,配制出了抗压强度为154MPa,抗折强度为21.5MPa,且各项指标均能满足《客运专线活性粉末混凝土(RPC)材料人行道挡板、盖板暂...  相似文献   

17.
本文研究了水胶比、硅灰、石英粉、粉煤灰对活性粉末混凝土(RPC)强度和流动性的影响。研究表明,采用福建省地方材料.可以配制出抗压强度超过160MPa的活性粉末混凝土。  相似文献   

18.
本文研究了水胶比、硅灰、石英粉、粉煤灰对活性粉末混凝土(RPC)强度和流动性的影响。研究表明,采用福建省地方材料.可以配制出抗压强度超过160MPa的活性粉末混凝土。  相似文献   

19.
研究了不同种类的钢纤维在不同掺量下对活性粉末RPC混凝土抗压强度以及抗折强度的影响。研究结果表明:钢纤维直径对于RPC的强度有较大的影响;钢纤维的掺量对RPC强度影响的规律是:当体积掺量小于3%时,随着钢纤维的掺量增加,强度提高很快;当体积掺量超过3%时,强度增加缓慢。  相似文献   

20.
活性粉末混凝土主要由水泥、硅灰和石英砂等组成,单位体积混凝土的水泥用量高,而且细集料采用磨细石英粉,致使RPC的成本更高、能耗更大。针对该问题,以钢渣粉、硅灰、矿粉等作活性细掺料,研制掺钢渣粉的RPC。研究了水胶比、砂胶比、钢渣粉及钢纤维掺量等配比参数以及养护方式对含钢渣粉RPC强度的影响,确定了含钢渣粉RPC的适宜水胶比、砂胶比以及钢纤维掺量。按这些配合比参数在一定的胶凝材料组成下,经90℃的热养护,可制备出抗压强度130 MPa以上、抗折强度20 MPa以上的含钢渣粉RPC。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号