首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel group of antioxidant compounds, the pyrrolopyrimidines, has been discovered recently. Many of these possess significantly improved oral bioavailability (56-70% in rats), increased efficacy and potency in protecting cultured neurons against iron-induced lipid peroxidative injury and as much as a 5-fold increase in brain uptake compared with the 21-aminosteroid antioxidant compound, tirilazad mesylate (U-74006F), described earlier. They appear to quench lipid peroxidation reactions by electron-donating and/or radical-trapping mechanisms. Several compounds in the series, such as U-101033E and U-104067F, demonstrate greater ability than tirilazad to protect the hippocampal CA1 region in the gerbil transient (5-min) forebrain ischemia model. Delaying treatment until 4 hr after the ischemic insult still results in significant CA1 neuronal protection. U-101033E is still effective in salvaging a portion of the CA1 neuronal population when the ischemic duration is extended to 10 min. In addition, U-101033E has been found to be protective in the context of focal cerebral ischemia, reducing infarct size in the mouse permanent middle cerebral artery occlusion model, in contrast to tirilazad which is minimally effective. These results suggest that antioxidant compounds with improved brain parenchymal penetration are better able to limit certain types of ischemic brain damage than those which are localized in the cerebral microvasculature. However, the activity of U-101033E in improving early post-traumatic recovery in mice subjected to severe concussive head injury is similar to that of tirilazad. Last, the oral bioavailability of many pyrrolopyrimidines suggests that they may be useful for certain chronic neurodegenerative disorders in which lipid peroxidation plays a role.  相似文献   

2.
M Soehle  A Heimann  O Kempski 《Canadian Metallurgical Quarterly》1998,29(6):1240-6; discussion 1246-7
BACKGROUND AND PURPOSE: The lipid peroxidation inhibitor U-101033E was examined for effects on cerebral blood flow (CBF), cortical tissue hemoglobin oxygen saturation (HbSo2), and neuronal damage. METHODS: Fifteen minutes of global cerebral ischemia was induced by two-vessel occlusion and hypobaric hypotension. Wistar rats (n = 25) were randomized to receive vehicle (n = 9) or 40 mg/kg U-101033E (n = 9) intraperitoneally during 2 hours of reperfusion. A sham group (n = 7) had neither ischemia nor therapy. Histology was evaluated 7 days after ischemia. RESULTS: During late hyperperfusion (at 17 minutes), vehicle-treated animals had a higher (P = 0.044) cortical tissue HbSo2 (72.0 +/- 1.4%) than did U-101033E-treated animals (65.8 +/- 2.5%). Neuronal counts in the superficial cortex layer found after 7 days correlated negatively with rCBF (r = -0.76; P < 0.001) or cortical tissue HbSo2 (r = -0.56; P = 0.028) assessed during the late hyperperfusion phase. U-101033E reduced neuronal damage in hippocampal CA1 from 64.3 +/- 9.2% to 31.2 +/- 8.4% (P = 0.020), as well as in the superficial cortical layer from 53.5 +/- 14.6% to 12.8 +/- 11.7% (P = 0.046). While animals in the vehicle group had reduced counts in all four examined cortex layers (P < 0.05 versus sham group), there was significant cortical neuron loss in the U-101033E group in only one of four areas. U-101033E had no effect on resting CBF or CO2 reactivity. CONCLUSIONS: Postischemic application of U-101033E protects hippocampal CA1 and cortical neurons after 15 minutes of global cerebral ischemia. The results indicate that free radical-induced lipid peroxidation contributes to reperfusion injury, a process that can be inhibited by antioxidants such as U-101033E.  相似文献   

3.
4-Hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA) are major lipid peroxidation products generated by free radical attack on membranes and appear to contribute to the cytotoxic effects of oxidative stress by a mechanism involving adduct formation with cellular proteins. In the present studies, we investigated the relationship between lipid peroxidation and eventual inactivation of plasma membrane proteins using a model system consisting of purified red blood cell membranes and Fe2+/EDTA. Using this system, we also analyzed the ability of a novel antioxidant, U-101033E (2,4-diaminopyrrolopyrimidine), to inhibit lipid peroxidation and associated protein damage. Our results demonstrated that significant levels of MDA and 4-HNE are generated in this model system, and that both aldehydes are capable of cross-linking membrane proteins. In addition, we used a monoclonal antibody to demonstrate the presence of 4-HNE-protein adducts in this system. The generation of 4-HNE-protein adducts closely paralleled the time course of lipid peroxidation and membrane protein cross-linking, suggesting that 4-HNE may contribute to membrane protein cross-linking. Analysis of U-101033E in this system showed that this antioxidant inhibited lipid peroxidation, prevented the appearance of 4-HNE-protein adducts, and strongly reduced membrane protein cross-linking, with an EC50 of 0.5 microM. We also show that these antioxidant effects were not due to the scavenging of superoxide anion. Thus, these studies demonstrate the potential usefulness of U-101033E for treating certain disease processes where lipid peroxidation plays a role in disease pathogenesis.  相似文献   

4.
The present study measured the production of eicosanoids in the gerbil brain during early reperfusion after either a 3-h unilateral carotid occlusion (UCO, model of focal ischemia) or a 10-min bilateral carotid occlusion (BCO, model of global ischemia). Arachidonic acid (AA) metabolites were examined to determine if pretreatment with the 21-aminosteroid lipid peroxidation inhibitor U-74006F (tirilazad mesylate) could influence postreperfusion synthesis of brain eicosanoids. In the 3-h UCO focal ischemia model, there was an early (5-min) postreperfusion elevation in brain levels of PGF2 alpha, TXB2 and LTC4 (P < 0.05 vs. sham for all three eicosanoids). LTB4 also rose but not significantly. On the other hand, PGE2 and 6-keto-PGF1 alpha tended to decrease during ischemia and at 5-min postreperfusion (P < 0.05 vs. sham for PGE2). Pretreatment with known neuroprotective doses of U-74006F in this model (10 mg/kg i.p. 10 min before and again immediately upon reperfusion) did not affect the increase in PGF2 alpha or TXB2 but significantly blunted the elevations in LTC4 and LTB4. The postreperfusion decrease in PGE2 was also attenuated. In the 10-min BCO global ischemia model, there was also an increase in each of the measured eicosanoids, except LTB4, at 5 min after reperfusion. Pretreatment with U-74006F (10 mg/kg i.p. 10 min before ischemia) selectively decreased the rise in LTC4 but did not significantly affect the other eicosanoids. In contrast, the antioxidant actually caused a significant enhancement of the postreperfusion increase in PGE2 vs. vehicle-treated animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Epidermal growth factor (EGF) has been considered to be a candidate for neurotrophic factors on the basis of the results of several in vitro studies. However, the in vivo effect of EGF on ischemic neurons as well as its mechanism of action have not been fully understood. In the present in vivo study using a gerbil ischemia-model, we examined the effects of EGF on ischemia-induced learning disability and hippocampal CA1 neuron damage. Cerebroventricular infusion of EGF (24 or 120 ng/d) for 7 days to gerbils starting 2 hours before or immediately after transient forebrain ischemia caused a significant prolongation of response latency time in a passive avoidance task in comparison with the response latency of vehicle-treated ischemic animals. Subsequent histologic examinations showed that EGF effectively prevented delayed neuronal death of CA1 neurons in the stratum pyramidale and preserved synapses intact within the strata moleculare, radiatum, and oriens of the hippocampal CA1 region. In situ detection of DNA fragmentation (TUNEL staining) revealed that ischemic animals infused with EGF contained fewer TUNEL-positive neurons in the hippocampal CA1 field than those infused with vehicle alone at the seventh day after ischemia. In primary hippocampal cultures, EGF (0.048 to 6.0 ng/mL) extended the survival of cultured neurons, facilitated neurite outgrowth, and prevented neuronal damage caused by the hydroxyl radical-producing agent FeSO4 and by the peroxynitrite-producing agent 3-morpholinosydnonimine in a dose-dependent manner. Moreover, EGF significantly attenuated FeSO4-induced lipid peroxidation of cultured neurons. These findings suggest that EGF has a neuroprotective effect on ischemic hippocampal neurons in vivo possibly through inhibition of free radical neurotoxicity and lipid peroxidation.  相似文献   

6.
The effects of Vitamin E administration on antioxidant enzyme activities and nitrite-nitrate levels of the reperfused rat kidney tissues were investigated by performing a 60 min ischemia followed by 24 and 72 hours of reperfusion. Vitamin E administration or the placebo (SF) was applied as 100 mg/kg BW. As expected, catalase (CAT) (p<0.05) and superoxide dismutase (SOD) (p<0.05) activities of ischemia/reperfused (I/R) kidney tissue were lower and malondialdehyde (MDA) levels were higher than control kidneys in both SF and vitamin E treated groups following 24 h reperfusion. During reperfusion of long term (72 h), vitamin E triggered a decrease in the MDA levels in the ischemic tissue, while it did not provoke a significant effect on SOD and catalase activities. Total nitrite levels of ischemic tissues in both of the groups were higher than matched control kidneys and this elevation was more clear in the vitamin E treated group. Our results showed that vitamin E has a protective effect on I/R injury, by a direct chain breaking effect on lipid peroxidation (LPO) and hence preventing the nitric oxide (NO) reservoir of ischemic tissue. Alfa-tocopherol may be a promising agent for the prevention of tissue injury caused by free oxygen radicals.  相似文献   

7.
The change in the subcellular distribution of Ca2+/calmodulin-dependent protein kinase II was studied in the rat hippocampus following normothermic and hypothermic transient cerebral ischemia of 15 min duration. A decrease in immunostaining of Ca2+/calmodulin-dependent protein kinase II was observed at 1 h of reperfusion which persisted until cell death in the CA1 region. In the CA3 and dentate gyrus areas immunostaining recovered at one to three days of reperfusion. The CA2+/calmodulin-dependent protein kinase II was translocated to synaptic junctions during ischemia and reperfusion which could be due to a persistent change in the intracellular calcium ion homeostasis. The expression of the messenger RNA of the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II decreased in the entire hippocampus during reperfusion, and was most marked in the dentate gyrus at 12 h of reperfusion. This decrease could be a feedback downregulation of the mRNA due to increased Ca2+/calmodulin-dependent protein kinase II activation. Intraischemic hypothermia protected against ischemic neuronal damage and attenuated the ischemia-induced decrease of Ca2+/calmodulin-dependent protein kinase II immunostaining in all hippocampal regions. Hypothermia also reduced the translocation of Ca2+/calmodulin-dependent protein kinase II and restored Ca2+/calmodulin-dependent protein kinase II alpha messenger RNA after ischemia. The data suggest that ischemia leads to an aberrant Ca2+/calmodulin-dependent protein kinase II mediated signal transduction in the CA1 region, which is important for the development of delayed neuronal damage. Hypothermia enhances the restoration of the Ca2+/calmodulin-dependent protein kinase II mediated cell signalling.  相似文献   

8.
STUDY DESIGN: The effect of epidural space perfusion with chilled saline solution (% 0.9 NaCl) on lipid peroxidation after experimental spinal cord injury in rats was evaluated. OBJECTIVES: The extent of lipid peroxidation is a useful parameter for evaluating the cellular disturbance caused by spinal cord trauma in experimental conditions. The protective effects of hypothermia against neurological injury resulting from trauma or ischemia both in experimental and clinical situations have been demonstrated. SETTING: Departments of Neurosurgery and Biochemistry, Cerrahpa?a Medical School, Istanbul, Turkey. METHODS: Twenty-five female Wistar Albino rats were used. There were five rats in group I (sham-operated), seven rats in group II (trauma), and eight rats in group III (epidural cooling). The remaining five rats were used for the pilot study to determine the spinal cord and body temperature. A clip compression method was used to produce acute spinal cord injury. In group III, 30 min after the trauma the injured spinal cord was cooled by perfusion of the epidural space with chilled saline solution (% 0.9 NaCl) with a flow rate of 5 ml/min for 30 min. At 2 h after trauma, all rats other than the ones used in the pilot study, were sacrificed and the spinal cords were excised. The extent of lipid peroxidation in the spinal cord was assessed by measuring the tissue content of malonil dialdehyde (MDA). RESULTS: The tissue MDA contents were 1.58 micromol MDA/gram wet weight (gww) in group I (sham-operated), 2.58 micromol MDA/gww in group 2 (trauma), and 1.77 micromol/gww in group 3 (epidural cooling), the differences being statistically significant. CONCLUSION: The results indicated that epidural cooling of traumatized spinal cord is effective in preventing secondary damage due to the peroxidation of lipid membranes.  相似文献   

9.
Reactive oxygen molecules (ROM) have been suggested to contribute to many pathological conditions including vasculitides and renal diseases. In the present study we measured the activity of superoxide dismutase (SOD) as an antioxidant enzyme in red blood cells and the level of malondialdehyde (MDA), which is a product and an indicator of lipid peroxidation, in the plasma of 16 children (7M, 9F) with Henoch Sch?nlein purpura (HSP) at the onset of the disease (SOD 1 and MDA 1) and at the remission period (SOD 2 and MDA 2). The results were compared with the results of 17 healthy children studied as a control group. There was no significant difference for SOD activities between the patients in each period and the control group (p > 0.05). There was a statistically significant difference between MDA 1 and MDA 2 levels (p < 0.01), each of which were also significantly different from the MDA levels of control group (p < 0.001 and p < 0.01, respectively). The effect of ROMs on different clinical conditions of HSP was also examined and lipid peroxidation was found to be increased more in patients with renal involvement. It is concluded that oxidant stress especially lipid peroxidation plays an important role in the pathogenesis of HSP and in development of renal injury.  相似文献   

10.
Ferritin contains most of the iron found in the brain, and the release of iron from ferritin has an essential role in iron-dependent lipid peroxidation. We examined the effect of cultured microglia on the ferritin-dependent lipid peroxidation of phospholipid liposomes monitored by the formation of thiobarbituric acid-reactive substances. Microglia stimulated by phorbol myristate acetate caused lipid peroxidation in the presence of ferritin. This lipid peroxidation was mediated by superoxide produced by the microglia and iron released from the ferritin. Lipid peroxidation induced by activated microglia may be partly responsible for the oxidative damage that is thought to occur in Parkinson's disease and other neurodegenerative disorders.  相似文献   

11.
This work has explored the relationship between excitotoxicity and the amyloid precursor protein gene (APP) which may be relevant to future therapeutic developments in Alzheimer's disease. The excitotoxic effects of kainic acid (KA) and pentylenetetrazole (PTZ) have been compared and contrasted on the two major mRNA isoforms of APP using in situ hybridization and quantitative analysis of gene expression in rat brain. The Kunitz Protease Inhibitor containing isoform APP 770 KPI+, the major glial cell isoform, has been shown to be stimulated after KA and was related to neuronal loss and astrocyte activation as gauged by GFAP mRNA. This was associated with reduced expression of APP695 KPI- isoform, the major neuronal isoform. These changes were not observed after PTZ where there was no neuronal loss and no glial reaction. The KA induced changes in APP were prevented by pretreatment with the non-competitive NMDA receptor antagonist dizocilpine and the barbiturate pentobarbitone, but not with the kappa-opioid receptor agonist enadoline. These findings were related to the suppression of seizures and the survival of neurons. In conclusion, excitotoxic stimulation leading to neuronal death was associated with increased expression of APP KPI+ mRNA and decreased APP KPI- mRNA, a finding which may relate to the plasticity of the central nervous system.  相似文献   

12.
We present analytical and neuroprotective data on a unique spin trapping agent derived from a novel chemical class known as an azulenyl nitrone (AZN). Based on Colorimetric properties, AZN was used to assess the formation of free radicals in a bilateral carotid occlusion (BCO) model in gerbils by monitoring the conversion of the nitrone to the aldehyde in affected tissue. In addition, AZN was tested as a neuroprotectant in this model regarding the preservation of CA1 pyramidal cells of the hippocampus following transient ischemia/reperfusion. AZN was electrochemically oxidized to give the aldehyde using an HPLC system with on line electrochemical oxidation. The oxidation potential associated with a 50% loss of AZN occurred at about 600 mV (half-wave potential versus palladium electrode). The major product detected as AZN oxidation occurred in an aqueous methanolic medium was the corresponding azulenyl aldehyde. Oxidation of AZN was inversely related to the formation of the aldehyde. Based on this test, we considered the in vivo conversion of AZN to aldehyde to be a measurement of oxidative stress in tissue. Results show that 0.3% of hippocampal AZN was converted to aldehyde in animals treated as shams. However, in gerbils subjected to a 7-min ischemic insult plus 7-min reperfusion, the conversion rate was about 3 times higher at 1.0%. In this model, surviving CA1 hippocampal neurons were counted from gerbils that were subjected to 7 mins of BCO followed by 5 days of reperfusion. In sham animals, about 89 cells were counted in a selected field of CA1 neurons. With injury, only 27 cells on average survived (70% loss) and were counted from this selected field. Under similar conditions and AZN treatment, 57 cells survived (36% loss). We conclude, therefore, that the demonstrated neuroprotection occurs because AZN neutralizes radicals which contribute to neuronal damage following ischemia/reperfusion.  相似文献   

13.
OBJECTIVE: To study the effect of vitamin E supplementation on platelet hyperaggregability in type 1 diabetic patients. RESEARCH DESIGN AND METHODS: Written informed consent according to the Institutional Review Board on Human Experimentation guidelines was obtained from diabetic patients (n = 29) and their age-matched normal siblings (n = 21) to participate in this study. Diabetic patients were supplemented with DL-alpha-tocopherol (vitamin E) capsule (orally, 100 IU/day) or placebo for 3 months in a double-blind clinical trial. Alternate diabetic patients were assigned to vitamin E or placebo during regular visits to the clinic. Fasting blood was collected from each diabetic patient before the start and after the vitamin E or placebo supplementation. Platelet aggregability was assessed by competitive enzyme-linked immunosorbent assay of the blood TxB2 (a stable thromboxane metabolite). Plasma vitamin E and MDA (malondialdehyde, a product of lipid peroxidation) was assessed by high-performance liquid chromatography. Data were analyzed statistically on 12 diabetic patients on vitamin E and 12 on placebo supplementation. RESULTS: Diabetic patients (n = 29) had 62% higher (P < 0.05) levels of TxB2 and 15% higher levels (P < 0.05) of MDA in comparison to normal subjects (n = 21). Plasma TxB2 levels had a significant correlation with MDA levels (r = 0.45, P < 0.02) but not with the HbA1 (r = -0.08), glucose (r = -0.13), duration of diabetes (r = -0.04), or age (r = 0.12) of diabetic patients. Vitamin E supplementation lowered MDA levels by 30% (P < 0.04), TxB2 levels by 51% (P < 0.03), and triglyceride levels by 22% (P < 0.04) in diabetic patients. There were no differences in these parameters before versus after placebo supplementation. CONCLUSIONS: The elevated blood level of TxB2 (hyperaggregability of platelets) is significantly related to the level of lipid peroxidation products (oxidative stress) in type 1 diabetic patients. Supplementation of modest doses of vitamin E (100 IU/day) significantly lowers blood TxB2 and lipid peroxidation products levels in type 1 diabetic patients.  相似文献   

14.
Brain injury induces reactive gliosis, characterized by increased expression of glial fibrillary acidic protein (GFAP), astrocyte hypertrophy, and hyperplasia of astrocytes and microglia. One hypothesis tested in this study was whether ganglioside GD3+ glial precursor cells would contribute to macroglial proliferation following injury. Adult rats received a cortical stab wound. Proliferating cells were identified by immunostaining for proliferating cell nuclear antigen (PCNA) and by [3H]-thymidine autoradiography, and cell phenotypes by immunocytochemical staining for GD3, GFAP, ED1 (for reactive microglia) and for Bandeiraea Simplicifolia isolectin-B4 binding (all microglia). Animals were labeled with thymidine at 1,2,3, and 4 days postlesion (dpl) and sacrificed at various times thereafter. Proliferating cells of each phenotype were quantified. A dramatic upregulation of GD3 on ramified microglia was seen in the ipsilateral hemisphere by 2 dpl. Proliferating cells consisted of microglia and fewer astrocytes. Microglia proliferated maximally at 2-3 dpl and one third to one half were GD3+. Astrocytes proliferated maximally at 3-4 dpl, and some were also GD3+. Both ramified and ameboid forms of microglia proliferated and by 4 dpl all GD3+ microglia were ED1+ and vice versa. In the contralateral cortex microglia expressed neither GD3 nor ED1. Thus they acquired these antigens when activated. Neither microglia nor astrocytes that were thymidine-labeled at 2, 3, or 4 dpl changed in number in subsequent days. Most thymidine+ astrocytes were large GFAP+ reactive cells that clearly arose from pre-existing astrocytes, not from GD3+ glial precursors. In this model of injury microglia proliferate earlier and to a much greater extent than astrocytes, they can divide when in ramified form, and GD3 is up-regulated in most reactive microglia and in a subset of reactive astrocytes. We also conclude that microglial proliferation precedes proliferation of invading blood-borne macrophages.  相似文献   

15.
Recent studies strongly suggest that oxidative stresses participate in ischemia/reperfusion-induced neurodegeneration. In addition, heme oxygenase (HO) and major histocompatibility complex (MHC) antigens serve as functional molecules against oxidative stress and as self-recognition markers in the immune system, respectively. In this study, we examined the induction of HO and MHC antigens in the rat hippocampus after transient forebrain ischemia. The protein level of HO-1 was significantly enhanced after an episode of ischemia. After ischemia, HO-1 expression was observed early but transiently in the CA1 pyramidal neurons and later but continuously in glial cells. Glial cells expressing HO-1 were predominantly ameboid microglia, but not astrocytes. Ameboid microglia expressing HO-1 were predominantly localized with MHC class II antigens. These results indicate that (1) HO-1 expression in CA1 pyramidal neurons may be harmful, and (2) ischemia induces HO-1 in ameboid microglia that express MHC class II antigens, indicating a very specific microglial stress protein response.  相似文献   

16.
BACKGROUND AND PURPOSE: The novel muscarinic cholinergic partial agonist U-80816E was tested in the gerbil brief bilateral carotid occlusion ischemia model based on the rationale that the compound's hypothermic properties might afford effective protection of the selectively vulnerable hippocampal CA1 region. METHODS: Male gerbils were subjected to either 10 or 15 minutes of bilateral carotid occlusion, followed by histopathological assessment of the CA1 neuronal survival 7 days later. RESULTS: In saline-treated animals, 10 minutes of bilateral carotid occlusion resulted in a 30.5% loss of CA1 neurons, whereas a 15-minute insult resulted in a 49.6% loss. Administration of U-80816E (6 mg/kg i.p. 30 minutes before bilateral carotid occlusion and again 2 hours after reperfusion) resulted in a significant protective effect of the CA1 neuronal population with either duration of ischemia; neuronal loss was reduced to 12.6% in the milder model (p < 0.05 versus saline-treated) and 24.9% in the more severe model (p < 0.04 versus saline). However, the 6 mg/kg i.p. dose of U-80816E was found to produce a 1.0 degree C decrease in brain temperature (measured with a tympanic temperature probe) at 10 minutes of ischemia compared with that of saline-treated gerbils. At 10 minutes of reperfusion, after the 10-minute episode of ischemia, the brain temperature of the U-80816E-treated gerbils was 2.2 degrees C lower than that of saline-treated animals. When the U-80816E-treated gerbils were subjected to either 10 or 15 minutes of ischemia but placed in a heated chamber that prevented the hypothermic effects, no cerebroprotection was observed. CONCLUSIONS: These results show that the anti-ischemic efficacy of U-80816E is mediated through its hypothermic properties, thus suggesting the feasibility of pharmacologically induced hypothermia as a cerebroprotective approach.  相似文献   

17.
Lipid peroxidation is a critical pathway of reactive oxygen species inducing tissue injury in postischemic acute renal failure. In order to evaluate the effect of renal ischemia reperfusion on kidneys, renal tissue malondialdehyde (MDA, nmol/g wet weight) concentration was measured in 29 male Wistar rats subjected to a midline abdominal incision and 60 min occlusion of the left renal artery. A right nephrectomy was performed at the beginning of the ischemic period. The animals were separated in four groups. Groups 1 (n = 7) and 3 (n = 7) underwent 60 min of ischemia and 15 min of reperfusion, respectively. Groups 2 (n = 8) and 4 (n = 7) were subjected to the same procedure but, in addition, they received 2.5 mg/kg TMZ into the tail vein 2 h prior to the left renal artery occlusion. A significant elevation of MDA after 60 min of ischemia (1.43 vs. 2.1, p < 0.001), which was augmented after 15 min of reperfusion (1.4 vs. 3.72, p < 0.001) was observed. Furthermore, there was a significant reduction of renal tissue MDA in ischemic rats treated with TMZ (group 3) (2.1 vs. 1.52, p < 0.001). The maximum reduction of renal tissue MDA was observed in ischemic-reperfused rats (group 4) that had received TMZ (3.72 vs. 1.36, p < 0.001). It is suggested that lipid peroxidation is a critical event in postischemic acute renal failure, and TMZ is a useful protective agent of renal damage from oxygen free radicals.  相似文献   

18.
Utilizing a specific polyclonal antibody against a peptide unique for brain-derived neurotrophic factor (BDNF), we investigated the regional and temporal profiles of immunoreactivity of the BDNF protein in the rat hippocampus after transient forebrain ischemia. The pattern of immunoreactivity for the BDNF receptor (TrkB) was also examined and compared with that for BDNF. In the early phase after ischemia, we observed a distinct regional difference in immunoreactivity between the pyramidal cell layer and the stratum radiatum of the CA1 subfield. In the pyramidal cell layer, there was a rapid and transient increase in the positive immunostaining for both BDNF and TrkB. By contrast, in the stratum radiatum there was a marked decrease in BDNF immunoreactivity, but not one in that of TrkB. One week after ischemia, high immunoreactivity for both BDNF and TrkB was observed in the reactive astrocytes in the dendritic field of the CA1 subfield. These findings suggest that a transport of BDNF from the neuronal soma to the dendrites of the stratum radiatum might be ceased after the ischemic insult. Thus, a dysfunctional autocrine mechanism of BDNF within the CA1 neuron may be involved in the pathogenesis of selective neuronal damage after ischemia.  相似文献   

19.
In the present work, the role of lipid peroxidation in cellular lethal injury induced by various types of oxidative stress has been studied in both normal and tumor thymocytes. The prooxidants included either a xanthine/xanthine oxidase system, which is an exogenous source of oxyradicals, or tert-butyl hydroperoxide (t-BOOH), which enters the cell and endogenously produces free radicals. Our data demonstrate that: (A) Using xanthine/xanthine oxidase system as a prooxidant, normal thymocytes are more sensitive than thymoma cells to oxidative damage, as their lactate dehydrogenase (LDH) and malondialdehyde (MDA) release is higher than that of tumor cells. By varying Fe3+/ADP ratios, a positive correlation can be established between LDH and MDA release only in normal thymocytes. While thymoma cells still show a very high level of vitamin E (80%) after 15 min of incubation with this prooxidant, normal thymocytes lose it after the same incubation time. (B) Using t-BOOH as a prooxidant, normal thymocytes release a higher amount of MDA but a lower amount of LDH than thymoma cells. In agreement with the results obtained with the xanthine/xanthine oxidase system, by varying the concentrations of the prooxidant, a correlation between LDH and MDA release can be established only in normal thymocytes. Although high levels of the antioxidant are still present in both kinds of cells after 15 min of incubation with t-BOOH, normal thymocytes consume vitamin E faster than thymoma cells. These data suggest that the role of lipid peroxidation in cell lethal injury is influenced by the source and the site of radical production as well as by the cell type. With t-BOOH as a prooxidant in normal thymocytes, lipid peroxidation is only partially involved in the induction of irreversible cell injury, but it plays a crucial role when the xanthine/xanthine oxidase system is used as a prooxidant. Moreover, whatever the prooxidant used in tumor thymocytes, membranes are more resistant to lipid peroxidation, suggesting that this mechanism is not causally related to cell death.  相似文献   

20.
We investigated the oxidative state of low-density lipoprotein (LDL) in patients with beta-thalassemia to determine whether there was an association with atherogenesis. Conjugated diene lipid hydroperoxides (CD) and the level of major lipid antioxidants in LDL, as well as modified LDL protein, were evaluated in 35 beta-thalassemia intermedia patients, aged 10 to 60, and compared with age-matched healthy controls. Vitamin E and beta-carotene levels in LDL from patients were 45% and 24% of that observed in healthy controls, respectively. In contrast, the mean amount of LDL-CD was threefold higher and lysil residues of apo B-100 were decreased by 17%. LDL-CD in thalassemia patients showed a strong inverse correlation with LDL vitamin E (r = -0.784; P <.0001), while a negative trend was observed with LDL-beta-carotene (r = -0.443; P =.149). In the plasma of thalassemia patients, malondialdehyde (MDA), a byproduct of lipid peroxidation, was increased by about twofold, while vitamin E showed a 52% decrease versus healthy controls. LDL-CD were inversely correlated with plasma vitamin E (r = -0.659; P <.0001) and correlated positively with plasma MDA (r = 0.621; P <. 0001). Plasma ferritin was positively correlated with LDL-CD (r = 0.583; P =.0002). No correlation was found between the age of the patients and plasma MDA or LDL-CD. The LDL from thalassemia patients was cytotoxic to cultured human fibroblasts and cytotoxicity increased with the content of lipid peroxidation products. Clinical evidence of mild to severe vascular complications in nine of the patients was then matched with levels of LDL-CD, which were 36% to 118% higher than the mean levels of the patients. Our results could account for the incidence of atherogenic vascular diseases often reported in beta-thalassemia patients. We suggest that the level of plasma MDA in beta-thalassemia patients may represent a sensitive index of the oxidative status of LDL in vivo and of its potential atherogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号