首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
2.
The objective of the work is to demonstrate feasibility of producing functional polymer nanocomposite films for light emitting applications using the new double beam pulsed laser deposition (DPLD) technique. The existing pulsed laser deposition vacuum chamber has been modified to accommodate two laser beams of different wavelengths for the in situ ablation of two targets: a polymer host and a rare earth based highly efficient upconversion emitting inorganic dopant. Special provisions were made for cooling the target to control the ablation of the polymer without interrupting the process. Nanocomposite films of acrylic polymer and nanoparticles of the compounds of the rare earth elements were fabricated by the proposed method with near-infra-red laser radiation (1064-nm wavelength) ablating the polymer targets and visible radiation (532 nm) ablating the inorganic targets. The fabricated nanocomposite films were characterized using atomic force microscopy, X-ray diffraction, optical fluorescence spectroscopy, and visual observation of the fluorescence. It was discovered that the produced polymer nanocomposite films retained the crystalline structure and the upconversion fluorescence properties of the initial rare earth compounds mainly due to the better control of the deposition process of the materials with substantially different properties. The proposed method can be potentially used for making a wide variety of composite films.  相似文献   

3.
Smooth, perfectly spherical, highly hydrophilic microspheres have been prepared from crosslinked poly(methyl methacrylate) microspheres by alkaline hydrolysis in ethylene glycol at elevated temperatures. These microspheres absorb varying quantities of water depending upon the extent of hydrolysis. Subcutaneous implantation studies on rabbits demonstrated that the microspheres are biocompatible. Implantation studies in the renal arteries of dogs demonstrated the occlusion effect produced by the microspheres. Microspheres could be made radiopaque by the incorporation of barium sulphate. Potential uses envisaged for these microspheres in the biomedical area are that of artificial emboli for endovascular embolization and as microcarriers for the growth and propagation of anchorage dependent mammalian cells.  相似文献   

4.
Electrospinning technique was used to fabricate poly(methyl methacrylate) (PMMA) fibres incorporating CdS and CdSe quantum dots (nanoparticles). Different nanoparticle loadings (2, 5 and 10 wt% with respect to PMMA) were used and the effect of the quantum dots on the properties of the fibres was studied. The optical properties of the hybrid composite fibres were investigated by photoluminescence and UV-vis spectrophotometry. Scanning electron microscopy (SEM), X-ray diffraction and FTIR spectrophotometry were also used to investigate the morphology and structure of the fibres. The optical studies showed that the size-tunable optical properties can be achieved in the polymer fibres by addition of quantum dots. SEM images showed that the morphologies of the fibres were dependent on the added amounts of quantum dots. A spiral type of morphology was observed with an increase in the concentration of CdS and CdSe nanoparticles. Less beaded structures and bigger diameter fibres were obtained at higher quantum dot concentrations. X-ray diffractometry detected the amorphous peaks of the polymer and even after the quantum dots were added and the FTIR analysis shows that there was no considerable interaction between the quantum dots and the polymer fibres at low concentration of quantum dots however at higher concentrations some interactions were observed which shows that QDs were present on the surfaces of the fibres.  相似文献   

5.
将用共沉淀法合成的包覆油酸的Fe3O4纳米粒子,分散在甲基丙烯酸甲酯(MMA)中,采用原位聚合法制备得到PMMA/Fe3O4纳米复合材料,研究了Fe3O4含量对复合材料的玻璃化转变温度(Tg)、溶解性能以及复合材料中PMMA分子量的影响.实验结果显示:复合材料的Tg较纯PMMA有所提高,且随着Fe3O4含量的增大而增高...  相似文献   

6.
Poly(methyl methacrylate) polymer nanocomposites were prepared by in situ bulk free radical polymerization. To ensure high-quality dispersion of the oxide nanoparticles, some composites were prepared from nanoparticles predispersed in propylene glycol methyl ether acetate (PGMEA). The degree to which this additional dispersing medium interacted with the aluminum oxide nanoparticle was studied by attenuated total reflectance (ATR-FTIR), which confirmed secondary bonding and ionic interaction across the particle/dispersing medium interface. Additionally, the effect of the dispersing medium and the nanoparticles on the degree of monomer conversion was determined by Raman spectroscopy. In the presence of oxide nanoparticles alone, the active surface of the nanoparticles traps propagating radicals which significantly reduces monomer conversion. Conversely, the degree of monomer conversion is enhanced in composites containing predispersing nanoparticles, apparently by passivation/functionalization of the oxide surface by the PGMEA.  相似文献   

7.
The PMMA nanocomposites were prepared by melt processing method. The influence of organoclay loading on extent of intercalation, thermal, mechanical and flammability properties of poly(methyl methacrylate) (PMMA)-clay nanocomposites were studied. Three different organoclay modifiers with varying hydrophobicity (single tallow vs. ditallow) were investigated. The nanocomposites were characterized by using wide angle X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. The intercalation of polymer chain within the silicate galleries was confirmed by WAXD and TEM. Mechanical properties such as tensile modulus (E), tensile strength, percentage elongation at break and impact strength were determined for nanocomposites at various clay loadings. Overall thermal stability of nanocomposites increased by 16-17 °C. The enhancement in Tg of nanocomposite is merely by 2-4 °C. The incorporation of maleic anhydride as compatibilizer further enhanced all the properties indicating improved interface between PMMA and clay. The flammability characteristics were studied by determining the rate of burning and LOI.  相似文献   

8.
Hybrid materials, which consist of organic-inorganic materials, are of profound interest owing to their unexpected synergistically derived properties. These hybrid materials replaced the pristine polymers due to their higher strength and stiffness in the recent years. In the present work, studies concerning the preparation of poly (methyl methacrylate) (PMMA), PMMA/SiO2, and PMMA/TiO2 nanocomposites are reported. These nanocomposite polymers were synthesized by means of free radical polymerization of methyl methacrylate using benzoyl peroxide as an initiator in a water medium. Further ‘sol-gel’ transformation based hydrolysis and condensation of Ti and Si alkoxides were used to prepare the inorganic phase during the polymerization process of MMA. Paper presented at the Indo-Singapore symposium on ‘Advanced Functional Materials’, IIT Mumbai, 2006.  相似文献   

9.
High-energy MeV ions from accelerators are known to produce drastic modifications in polymers. The typical effects include chain scissions, crosslinks, molecular emission and double bond formation. Poly(methyl methacrylate) was doped with Fe(III) and irradiated with 95 MeV O7+ ions.57Fe-Mössbauer studies were done on the doped samples before and after irradiation. Before irradiation, no Mössbauer absorption was observed. The irradiated samples showed a good Mössbauer absorption, which seems to indicate that there is a significant interaction between the metal ion and the polymer matrix. Two possibilities exist at these doses (~ 22 × 1012 ions/cm): Fe(III) ions may be bridging the various polymer segments through crosslinking or amorphization of the sample leading to Fe-C bonding. Studies of FTIR, conductivity and glass transition temperatures on these samples support these observations.  相似文献   

10.
以相变物质正十二醇(DA)为芯材,聚甲基丙烯酸甲酯(PMMA)为壁材,采用悬浮聚合法制备了正十二醇-聚甲基丙烯酸甲酯(DA@PMMA)微胶囊。通过差示扫描量热仪(DSC),扫描电镜(SEM),透射电镜(TEM),傅里叶变换红外光谱仪(FIIR)和热重分析仪(TGA)等仪器对微胶囊进行检测表征。结果表明:当工艺为苯乙烯-马来酸甘钠盐(SMA)加入量占DA质量的7.5%,偶氮二异丁腈(AIBN)加入量占单体甲基丙烯酸甲酯(MMA)质量的7.5%,芯材壁材质量比为2∶1,搅拌速度为1 000r/min时,所制备的微胶囊整体性能最好。DA@PMMA微胶囊为球形,平均粒径26μm,DA@PMMA微胶囊中DA的质量分数为66%。DA@PMMA微胶囊的熔化焓和结晶焓分别是137.6J/g和132.8J/g。TGA和FIIR的分析表明,DA@PMMA微胶囊具有良好的性能。  相似文献   

11.
The relationship between fracture‐induced mechanophore activation and the strain and stress ahead of a propagating crack in poly(methyl methacrylate) (PMMA) is studied. The mechanophore spiropyran is used as a secondary cross‐linker in rubber toughened PMMA, and the spiropyran‐linked material is subjected to fracture testing. Mechanophore activation is detected and analysed by fluorescence imaging. Digital image correlation is used to measure the strain field ahead of the crack tip, whereas the corresponding stress field is calculated using the Hutchinson–Rice–Rosengren singularity field equations. Mechanophore activation follows a power law dependence on distance from the crack tip and provides both a qualitative and quantitative measure of the strain and stress fields ahead of the crack.  相似文献   

12.
Tension tests were conducted in air at room temperature on PMMA sheet specimens which had been previously soaked in a 40 vol % acetonitrile aqueous solution at 20 °C for 24 h and then dried in air at room temperature for 480 h. In contrast with an untreated specimen which fractured at a stress of 84 MPa and a strain of 9 %, shear yielding clearly took place at 42 MPa and the elongational fracture strain increased to about 148 %. No crazes were observed on the specimen surface and as a result the transparency of the PMMA was thoroughly maintained until fracture. Thus this soaking treatment may change PMMA to a completely ductile polymer without a crazing mechanism. The results of the dynamic viscoelastic measurements at 1 Hz show that the glass transition temperature was lowered to about 80 °C (as compared to about 110 °C), and the relaxation became much sharper with a higher peak value of 20 °C (as compared to a broad curve with a peak at 50 °C). This clear relaxation at room temperature may contribute to shear yielding and large plastic elongation of the treated PMMA.  相似文献   

13.
The crystallization modification of poly(vinylidene fluoride) (PVDF) was investigated for the blend films of PVDF and poly(methyl methacrylate) (PMMA). The mass crystallinity (χc) and further, the β-phase content (F(β)) of PVDF, were studied for the as-prepared blend films with different mass ratios. In addition, the variations of χc and F(β) were systematically probed once the PMMA component was removed from the related blend systems. DSC, FTIR and XRD measurements all indicated that 1) χc, F(β) and even the content of α-phase (F(α)) decreased with the addition of PMMA; 2) with the extraction of PMMA, both χc and F(β) increased while F(α) decreased. It is worth noting that the increase of χc and F(β) depended on the relative amount of extracted PMMA (EPMMA), i.e., the more PMMA was removed, the more χc and F(β) increased. These results reveal the hindrance effect from the PMMA constituent to the crystallization of PVDF, and consequently, this restriction would be released when the PMMA was extracted.  相似文献   

14.
Poly(methyl methacrylate) (PMMA) nanobeads-decorated multi-walled carbon nanotubes (MWNTs) and single-walled carbon nanotubes (SWNTs) nanocomposites were prepared using two processing steps. Initially, spherical PMMA nanoparticles were synthesized using an emulsion polymerization method. Afterward, the PMMA nanobeads were decorated to MWNTs and SWNTs using benzoyl peroxide as an initiator in water during a high temperature refluxing process. The results confirmed the linkage of the nanotubes to the surrounding PMMA nanobeads via a covalent bond. The resultant nanocomposites showed high solubility in chloroform without flocculation after 24 h. In addition, the nanotubes/PMMA nanocomposites were characterized by electrical resistance measurements to analyze their electrical conductivity and examined as electrorheological (ER) materials when dispersed in silicone oil.  相似文献   

15.
A novel single-step approach for the fabrication of poly(methyl methacrylate) structures by soft molding of a 5 wt% solution in acetone is reported. The use of a low weight solution and of a solvent with high volatility ensures a very fast patterning, down to 10 s. In addition, the process is extremely simple and cost-effective, since just one elastomeric mold is needed, and areas as large as 1 cm2 were patterned uniformly and defect-free. The process was applied to the fabrication of silver structures by silver deposition via electroless plating or evaporation followed by poly(methyl methacrylate) removal. Structures of various shapes and sizes, with dimensions in the micrometer and submicrometer range were successfully fabricated, showing the versatility of the process. This silver patterning process is particularly well suited for applications in microelectronics and optoelectronics, such as the fabrication of transparent electrodes for solar cells and displays, manufacturing of metal etching masks and wiring of printed circuits.  相似文献   

16.
The coupling of upconversion nanophosphors (UCNPs) with the surface plasmonic resonance (SPR) of noble metals is a promising way to improve luminescent efficiency of UCNPs; however, it is still a challenge to achieve stable, reproducible and effective upconversion luminescence (UCL) enhancement through such coupling. In this work, we present a novel strategy to improve UCL of NaYF4:ybB,Er3. UCNPs, by combining the near-field coupling of SPR of silver and the far-field coupling of poly(methyl methacrylate) (PMMA) opal photonic crystals (OPCs) with the UCNPs. In order to control the effective interaction distance between the UCNPs and the SPR, a porous silver film consisting of randomly distributed silver nanoparticles (NPs) (〉 100 nm) was prepared which demonstrated strong SPR over a broad wavelength range, and its coupling to the UCNPs was found to be much stronger than that of a dense film. In the far-field coupling of OPCs, the photonic stop band (PSB) of the PMMA OPCs was tuned to 980 nm, matching exactly the excitation light. By modulating the particle size of the UCNPs, and the direction and excitation power of the incident light, a maximum enhancement of 60-fold was observed, which is an important advance for metaMnduced UCL enhancement systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号