首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analysis of thermal effects in a diffusion bonded Er3+,Yb3+:glass/Co2+:MgAl2O4 microchip laser is presented. The analysis is performed for both wavelengths at 940 nm and at 975 nm as well as for two different sides of pumping, glass side and saturable absorber side. The heat sink effect of Co2+:MgAl2O4, as well as the impact of the thermal expansion and induced stress on the diffusion bonding are emphasised. The best configurations for reducing the temperature peaks, the Von Mises stresses on the diffusion bonding, and the thermal lensing are determined.  相似文献   

2.
It is demonstrated that plate-shaped crystals of Yb:LuPO4, which are grown from spontaneous nucleation by high-temperature solution method, can be utilized to make microchip lasers operating in continuous-wave (CW) or passively Q-switched mode. Efficient operation of such a microchip laser, which is built with a 0.3 mm thick crystal plate in a 2 mm long plane-parallel cavity, is realized at room temperature. With 2.37 W of pump power absorbed, 1.45 W of CW output power is generated with a slope efficiency of 73%. When passively Q-switched with a Cr4+:YAG crystal plate as saturable absorber, the laser produces a maximum pulsed output power of 0.53 W at 1013.3 nm, at a pulse repetition rate of 23.8 kHz, the resulting pulse energy, duration, and peak power are 22.3 μJ, 4.0 ns, and 5.6 kW, respectively.  相似文献   

3.
Using the WS2 nanosheets prepared by a facile hydrothermal reaction as saturable absorber (SA), we demonstrate a tri-wavelength passively Q-switching operation of a diode-pumped Yb:GdAl3(BO3)4 (Yb:GAB) crystal laser for the first time. The single pulse energy up to 1.30 μJ with the output power of 140 mW is obtained. The corresponding pulse width and repetition frequency rate are 440 ns and 107.8 kHz, respectively. The stable pulsed laser operates at 1044.9, 1045.6 and 1048.5 nm, simultaneously. This work suggests that solvothermal synthesized WS2 could be a promising SA to realize a simultaneously multi-wavelength laser operation.  相似文献   

4.
Yumashev KV 《Applied optics》1999,38(30):6343-6346
Saturable-absorber Q switching of a neodymium-doped YAlO(3) laser at 1.34 microm and an erbium-doped glass laser at 1.54 microm with a Co(2+):MgAl(2)O(4) crystal was demonstrated. Q-switched 1.34-microm pulses of 19-mJ energy and 60-ns duration and Q-switched 1.54-microm pulses of 2.7-mJ energy and 75-ns width were obtained. The ground-state absorption cross sections of the Co(2+):MgAl(2)O(4) crystal were estimated to be (2.8 +/- 0.4) x 10(-19) and (3.5 +/- 0.6) x 10(-19) cm(2) at 1.34 and 1.54 microm, respectively. The (4)T(1)((4)F)-->(4)A(2) relaxation time of the Co(2+) ion in the MgAl(2)O(4) crystal was measured to be approximately 350 ns.  相似文献   

5.
Abstract

The incident pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG composite crystal passively Q-switched microchip laser has been investigated experimentally and theoretically by moving the Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction. Highest pulse energy of 0.4 mJ has been generated when the Nd:YAG/Cr4+:YAG composite crystal is moved about 6 mm away from the focused pump beam waist. Laser pulses with pulse width of 1.7 ns and peak power of over 235 kW have been achieved. The theoretically calculated effective laser beam area at different positions of Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction is in good agreement with the experimental results. The highest peak power can be generated by adjusting the pump beam waist incident on the Nd:YAG/Cr4+:YAG composite crystal to optimize the effective laser beam area in passively Q-switched microchip laser.  相似文献   

6.
Mn4+ doped and Pr3+,4+, Nd3+ co-doped MgAl2Si2O8-based phosphors were first of all synthesized about 1300 °C. They were characterized by thermogravimetry (TG), differential thermal analysis (DTA), X-ray powder diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM). The luminescence mechanism of the phosphors, which showed broad red emission bands in the range of 610–715 nm and had a different maximum intensity when activated by UV illumination, was discussed. Such a red emission can be attributed to the intrinsic d–d transitions of Mn4+.  相似文献   

7.
《Optical Materials》2010,32(12):1787-1790
Up-converting yttrium oxysulfide nanomaterials doped with ytterbium and erbium (Y2O2S:Yb3+,Er3+) were prepared with the flux method. The precursor oxide materials were prepared using the combustion synthesis. The morphology of the oxysulfides was characterized with transmission electron microscopy (TEM). The particle size distribution was 10–110 nm, depending on the heating temperature. According to the X-ray powder diffraction (XPD), the crystal structure was found hexagonal and the particle sizes estimated with the Scherrer equation agreeded with the TEM images. Upon the 970 nm infrared (IR) laser excitation, the materials yield moderate green ((2H11/2, 4S3/2)  4I15/2 transition) and strong red (4F9/2  4I15/2) luminescence. The green luminescence was enhanced with respect to the red one by an increase in both the crystallite size and erbium concentration due to the cross-relaxation (CR) processes. The most intense up-conversion luminescence was achieved with xYb and xEr equal to 0.10 and 0.005, respectively. Above these concentrations, concentration quenching occurred.  相似文献   

8.
High-resolution absorption and stimulated-emission cross-section spectra are presented for monoclinic Nd:KGd(WO4)2 (Nd:KGW) laser crystals in the temperature range 77–450 K. At room-temperature, the maximum stimulated emission cross-section is σSE = 21.4 × 10−20 cm2 at 1067.3 nm, for light polarization E || Nm. The lifetime of the 4F3/2 state of Nd3+ in KGW is practically temperature independent at 115 ± 5 μs. Measurement of the energy transfer upconversion parameter for a 3 at.% Nd:KGW crystal proved that this was significantly smaller than for alternative hosts, ∼2.5 × 10−17 cm3/s. When cut along the Ng optical indicatrix axis, the Nd:KGW crystal was configured as a microchip laser, generating ∼4 W of continuous-wave output at 1067 nm with a slope efficiency of 61% under diode-pumping. Using a highly-doped (10 at.%) Nd:KGW crystal, the slope efficiency reached 71% and 74% when pumped with a laser diode and a Ti:Sapphire laser, respectively. The concept of an ultrathin (250 μm) Nd:KGW microchip laser sandwiched between two synthetic diamond heat-spreaders is demonstrated.  相似文献   

9.
采用溶胶-凝胶法在水相合成了纳米NaYF_4:Er~(3 ),Yb~(3 )上转换材料,980nm红外激光照射下,肉眼可观察到明亮的上转换发光。实验研究了铒、镱掺杂浓度及焙烧温度对材料合成的影响。所合成的纳米材料呈圆球形、颗粒均匀、分散性好,平均粒径70nm,可应用于生物标记。  相似文献   

10.
The MgAl2O4:Eu2+, Dy3+ nanophosphors with different particle sizes have been synthesized through a simple and inexpensive precipitate approach followed by a post-annealing process. The structure and morphology of the phosphor are characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). According to XRD and TEM results, the particle size of MgAl2O4:Eu2+, Dy3+ could be controlled via changing the ratio of MgSO4/Al2O3, and the obtained samples possess regular morphology. The afterglow properties of MgAl2O4:Eu2+, Dy3+ nanophosphors as a function of particle sizes are investigated by afterglow decay curves. Compared with the bulk phosphor, the nanophosphors exhibit longer afterglow time and higher initial afterglow intensity. In nanophosphors, there exist numerous defects on their surfaces due to the large surface to volume ratio, which generally act as luminescent killers, while some of which, however, can probably act as traps beneficial for the generation of afterglow. In the nanosized MgAl2O4:Eu2+, Dy3+ phosphor, the thermoluminescence results indeed indicate the existence of more traps which are introduced due to the large surface to volume ratio of nanoparticles and that the high temperature sintering process contributes to the longer afterglow in the nanophosphors.  相似文献   

11.
Eu3+, Er3+ and Yb3+ co-doped BaGd2(MoO4)4 two-color emission phosphor was synthesized by the high temperature solid-state method. The structure of the sample was characterized by XRD, and its luminescence properties were investigated in detail. Under the excitation of 395 nm ultraviolet light, the BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ phosphor emitted an intense red light at 595 and 614 nm, which can be attributed to 5D0  7F1 and 5D0  7F2 transitions of Eu3+, respectively. The phosphor will also show bright green light under 980 nm infrared light excitation. The green emission peaks centred at 529 and 552 nm, were attributed to 4H11/2  4I15/2 and 4S3/2  4I15/2 transitions of Er3+, respectively. It indicated that the two-color emission can be achieved from the same BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ host system based on the different pumping source, 395 nm UV light and 980 nm infrared light, respectively. The obtained results showed that this kind of phosphor may be potential in the field of multi-color fluorescence imaging and anti-counterfeiting.  相似文献   

12.
The synthesis and the spectroscopy of upconverting nanocolloidal solutions have recently generated considerable interest due to their potential application as biolevels and in biological assays. This paper reports the synthesis of lanthanides doped transparent colloidal solution via pulsed laser ablation (PLA) which is highly fluorescing. Er3+, Yb3+ co-doped Gd2O3 phosphor has been laser ablated to synthesize the colloidal solution in triply distilled water. Spherical shaped nanoparticles of the average diameter in the range of 8–26 nm have been synthesized and characterized. Efficient multicolor upconversion (UC) emission has been observed and possible UC mechanism has been suggested. This approach will provide a method to synthesize highly UC efficient, non-agglomerated, pure transparent nanocolloidal solution for biological applications from already reported efficient phosphors.  相似文献   

13.
Journal of Materials Science: Materials in Electronics - The NaY(WO4)2:Tm3+,Yb3+ (NYW:Tm3+,Yb3+) and NaY(WO4)2:Tm3+,Er3+,Yb3+ (NYW:Tm3+,Er3+,Yb3+) powders have been synthesized by the...  相似文献   

14.
《Optical Materials》2013,35(12):2041-2044
The upconversion luminescence spectra of nanocrystallite MgAl2O4 doped with 1% of Ho3+ and 5% of Yb3+ ions after excitation at 980 nm were measured. Influence of excitation regime either continuous or pulse on upconversion mechanisms was shown. For continuous wave (CW) laser excitation upconversion process is due to phonon assisted Excited State Absorption (ESA). For pulse laser excitation upconversion emission is due to Energy Transfer Upconversion (ETU).  相似文献   

15.
16.
Upconversion emission of different nanocrystalline YVO4:Er3+, Yb3+ synthesized by a hydrothermal process at low temperature was studied under 980 nm excitation where green [(2H11/2, 4S3/2) --> 4I15/2] and red (4F9/2 --> 4I15/2) emissions demonstrate sensitivity to the local environments of Er3+. Small particle size, high Yb3+ concentration, or high temperature favors the emission of the 2H11/2 --> 4I15/2 transition. Both XRD patterns and Raman spectra have confirmed that crystal lattice distortion of YVO4:Er3+, Yb3+ nanocrystals is more serious when the nanoparticle size is decreasing or Yb3+ concentration is increasing. This distortion is thought to play a key role in the observed spectral properties, which might lead to a new route to improve the monochromatic upconversion emission efficiency in these nanocrystals.  相似文献   

17.
We have taken advantage of congruent melting behavior of the nonlinear rare-earth oxoborate Ca4REO(BO3)3 family to perfect a process of collective fabrication of self-frequency doubling microchip laser based on Nd:GdCOB (Ca4Gd1−xNdxO(BO3)3) crystals. The process goes from Czochralski boule to 1 × 3 mm2 chips perfectly oriented (better than 0.1°) to the phase matching direction (θ=90°, φ=46°) in the XY principal plane, with dielectric mirrors directly deposited on both faces of the chips. 20 mW of self-frequency doubling output power at 530 nm was performed under 800 mW of diode laser as incident pump power at 812 nm. In addition, new compositions from the solid solution Ca4Gd1−xYxO(BO3)3 (Gd1−xYxCOB) (x=0.13, 0.16, 0.44) have been grown by the Czochralski pulling method, in order to achieve noncritical phase matching (NCPM) second harmonic generation of 4F3/2 → 4I9/2 Nd3+ doped laser hosts. Three types of laser wavelengths have been chosen: Nd:YAP (YAlO3) at 930 nm, Nd:YAG (Y3Al5O12) at 946 nm, and Nd:ASL (NdySr1−x LaxyMgx Al12−xO19) at 900 nm. Angular acceptance measurements of these three types of compositions present very large values, compared to pure GdCOB or YCOB oriented in critical phase matching configurations.  相似文献   

18.
Using a sol-gel process, we have synthesized compounds isostructural with the biogenic mineral whitlockite and containing calcium phosphate, β-Ca3(PO4)2, codoped with Er3+ and Yb3+ in various concentrations and ratios. Their particle size was determined to be ~42–57 nm by atomic force microscopy and ~93 nm by dynamic light scattering. The particles were shown to be weak anion exchangers (their zeta potential is ?13.3 mV). The observed luminescence of the β-Ca3(PO4)2:Er3+,Yb3+ phosphates in the visible spectral region (λ = 0.525, 0.550, and 0.650 μm) under IR excitation (λ = 0.98 μm) is due to the upconversion mechanism and is acceptable for in vivo imaging in terms of safety (green emission) and intensity. Biocompatibility testing results demonstrate that the β-Ca3(PO4)2:Er3+,Yb3+ phosphates meet the relevant biosafety and nontoxicity criteria.  相似文献   

19.
Pyrochlore Y2Sn2O7 nanophosphors codoped with Er3+ (fixed 2 at.%) and Yb3+ ions (2–16 at.%) were synthesized via hydrothermal process followed by heat treatment. We investigate the infrared-to-visible upconversion (UC) luminescence properties of Er–Yb codoped Y2Sn2O7. Upon 980 nm excitation at room temperature, green (at ~522 and 544 nm) and red (at ~661 nm) UC emissions were observed, which are ascribed to the (2H11/2, 4S3/2) → 4I15/2 and 4F9/2 → 4I15/2 transitions, respectively. It has been found that the Yb3+-doping concentrations have greatly influenced on the UC luminescence intensity and the emission ratio of the red and green in Y2Sn2O7:Yb3+/Er3+ nanophosphors. The tunable emission is due to the energy back transfer from Er3+ to Yb3+ and the cross relaxation between the two neighboring Er3+ ions. It is expected that the achieved single and intense red emission band may have potential application for in vivo bioimaging.  相似文献   

20.
The use of an “over 1000-nm near-infrared (NIR) in vivo fluorescence bioimaging” system based on lanthanide containing inorganic nanostructures emitting in the visible and NIR range under 980-nm excitation is proposed. It may overcome problems of currently used biomarkers including color fading, phototoxicity and scattering. Gd2O3:Er3+,Yb3+ nanoparticles and nanorods showing upconversion and NIR emission are synthesized and their cytotoxic behavior is investigated by incubation with B-cell hybridomas and macrophages. Surface modification with PEG-b-PAAc provides the necessary chemical durability reducing the release of toxic Gd3+ ions. NIR fluorescence microscopy is used to investigate the suitability of the nanostructures as NIR–NIR biomarkers. The in vitro uptake of bare and modified nanostructures by macrophages is investigated by confocal laser scanning microscopy. In vivo investigations revealed nanostructures in liver, lung, kidneys and spleen a few hours after injection into mice, while most of the nanostructures have been removed from the body after 24?h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号