共查询到20条相似文献,搜索用时 15 毫秒
1.
吴渺赵贵青仇中柱王保峰 《储能科学与技术》2022,(3):1019-1025
水系锌离子电池的能量密度高、稳定性好、安全系数高。NiCo_(2)O_(4)材料作为双过渡金属氧化物,其导电性能和电化学活性都很出色,本工作首次采用NiCo_(2)O_(4)材料作为水系锌离子电池的正极。采取了溶胶-凝胶法加煅烧热方法制备出立体尖晶石状的NiCo_(2)O_(4)材料,借助扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱分析技术(EDS)和电化学技术等表征测试手段,分析这种新型水系锌离子电池正极材料的形貌和电化学性能。结果表明,立体尖晶石状的NiCo_(2)O_(4)材料有着优良的纯度和结晶性,颗粒分散均匀,没有团聚,无杂质且具有良好稳定的充放电性能。电极在100 mA/g电流密度下,首次放电比容量为92 mA·h/g,100圈充放电测试后放电比容量为60 mA·h/g,200圈后,放电比容量保持在44 mA·h/g。但在循环倍率测试中发现,当电流密度较大时,NiCo_(2)O_(4)电极产生了27 mA·h/g的衰减,在一定程度上有着不可逆的冲击破坏。本研究有助于推动水性锌离子电池电极的应用,为高性能水性锌离子电池电极材料的研发提供实验依据。 相似文献
2.
锂离子电池具有能量密度高、自放电率低、使用温度范围广及循环寿命长等优点,在便携式电子设备、电动汽车和储能等领域得到广泛应用。TiNb_(2)O_(7)具有较高理论比容量(388 mAh/g),在充放电过程中体积形变较小,且在快速充电时可以避免锂枝晶的生成,使电池具有更好的安全性和更短的充电时间,是很有潜力的锂离子电池负极材料之一。但是,TiNb_(2)O_(7)的电子电导率和离子电导率较低,阻碍了其推广应用。本文作者通过对近期相关研究的探讨,结合国内外在TiNb_(2)O_(7)负极材料制备方面的最新研究进展,综述了TiNb_(2)O_(7)的结构、制备方法及改性策略,对其晶体结构及嵌锂机制进行讨论;同时介绍了高温固相法、溶胶凝胶法、静电纺丝法、溶剂热法及模板法等几种TiNb_(2)O_(7)的制备方法,分别介绍了纳米化、掺杂、引入氧空位及添加导电涂层等四个改性方法及其对TiNb_(2)O_(7)电化学性能的改善效果。综述分析表明,纳米化可以缩短锂离子的扩散路径,掺杂以及氧空位的引入可以改变TiNb_(2)O_(7)结构,复合电极可以改善其导电性,不同的改性方法可以有效地提高电极材料的倍率及循环性能,有望使其在高功率储能器件中得到良好应用。 相似文献
3.
O3型层状氧化物正极材料NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)具有高比容量、低成本和环境友好性等优点,被认为是最有前途的钠离子电池正极材料之一,但在充放电过程中会发生一系列复杂的相变,导致电化学性能较差。本研究报道了一种协同改性方法,以同时提高NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)正极材料的循环稳定性和倍率性能。通过将硼酸粉末和正极材料固相球磨混匀后低温煅烧,在NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)正极材料表面包覆纳米非金属氧化物B_(2)O_(3)。借助X射线衍射仪(XRD)、扫描电子显微技术(SEM)、透射电子显微镜(TEM)和电化学技术等测试手段,对比分析不同包覆量和原材料的形貌和电化学性能,筛选得到最优包覆量为2%(质量分数,余同)。该方法实现了B_(2)O_(3)的均匀包覆,并且没有改变NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)正极材料的晶体结构。通过电化学性能测试表明2%B_(2)O_(3)包覆材料在1 C倍率下循环200圈容量保持率从78%提升至87%。同时,2%B_(2)O_(3)包覆材料的高倍率性能也得到了改善,10 C高倍率下放电比容量从75 mAh/g提升至99 mAh/g。结果表明,这是一种有效且可靠的表面改性策略,可以增强钠离子电池层状氧化物正极材料的电化学性能。 相似文献
4.
Na_(3)V_(2)O_(2)(PO_(4))_(2)F(NVOPF)具有较稳定的聚阴离子结构、较高的工作电压和理论比能量,是一种具有良好应用前景的钠离子电池正极材料。但该材料在合成过程中易发生不规则团聚,且本征电导率低,导致材料的实际比容量较小,倍率性能和循环性能有待提高。通过离子掺杂以及合成具有微纳结构的材料可以有效提高这类材料的结构稳定性和电导率。本工作首次报道了多元醇辅助水热法合成具有空心微球结构的Nb5+掺杂NVOPF[NVNOPF,Na_(3)V_(2-x)NbxO_(2)(PO_(4))2F(0≤x≤0.15)]材料。所制备的NVOPF和NVNOPF是尺寸为0.7~1.0μm的具有中空结构的微球。可以发现微球由尺寸小于100 nm的纳米颗粒组成。纳米颗粒缩短钠离子的扩散距离,并且缓冲了由于钠离子的嵌入/脱出所导致的体积变化,提高了材料的循环稳定性。同时,掺杂Nb5+增大了NVOPF的晶格参数,增大了Na+扩散通道,将Na+在NVOPF中的固相扩散系数由Na_(3)V_(2)O_(2)(PO_(4))_(2)F的6.46×10^(-16)cm^(2)/s提高至Na3V1.90Nb0.10O2(PO_(4))_(2)F的3.52×10^(-15)cm^(2)/s。Na_(3)V_(1.90)Nb_(0.10)O_(2)(PO_(4))_(2)F材料以0.1 C倍率放电,首次放电比容量达126.4 mAh/g;以10 C倍率放电,初始比容量为98.1 mAh/g,500周循环后的容量保持率为95.2%,明显优于未掺杂材料的66.8%。研究结果显示掺杂Nb5+的空心球形微纳结构有效提高了NVOPF材料的电化学性能和循环稳定性。 相似文献
5.
6.
锂离子电池用LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)正极,具有较高比容量和较低成本的优点,但是其在高电压长循环时正极界面极不稳定、安全性能亟待提高。虽然锂快离子导体Li1.2Ca0.1Zr1.9(PO4)3制备的陶瓷隔膜在很大程度上可以解决电池的安全性问题,但是与NCM811正极界面稳定性差。本工作通过在陶瓷隔膜中添加具有稳定界面功能的氟化锂(LiF)的方法来解决此问题。采用扫描电子显微镜(SEM)、热重分析(TGA)、差示扫描量热法(DSC)、机械拉伸强度、热收缩、吸液率、电化学阻抗谱(EIS)、线性扫描伏安法(LSV)和充放电测试等方法进行表征。结果表明,当LiF占涂覆无机陶瓷颗粒总质量的10%时,得到的陶瓷隔膜性能最佳:具有良好的离子传输性能(室温离子电导率提高至9.5×10^(-4)S/cm)和最佳的界面稳定性。隔膜组装的Li||LiNi_(0.8)Co_(0.1)Ni_(0.1)O_(2)扣式电池在3.0~4.35 V的高电压范围以0.3 C倍率循环400次后,放电比容量从195.2 mAh/g减少到119.9 mAh/g,保持初始容量的61.4%,而没有添加LiF的陶瓷隔膜电池仅为32.7%。含LiF的陶瓷隔膜提升电池循环稳定性的原因是形成了高质量的高压正极/电解质界面膜,稳定了正极与陶瓷隔膜的界面,使正极材料在高电压下仍能保持结构的稳定。因此,本工作制备的陶瓷隔膜为NCM811正极在高电压锂离子电池中的商业化应用提供了一种便捷方法。 相似文献
7.
钠离子电池因其成本低廉、环境友好且与锂离子电池工作原理相似,在大规模储能领域极具应用潜力。作为决定电池能量密度的关键组成部分,O3型钠基层状过渡金属氧化物因高容量、合成简单等优势在众多正极材料中脱颖而出。然而,Na^(+)在O3结构中八面体位点间的迁移需克服较大的能垒,最终导致复杂反应相变的发生和容量快速衰减。因此,探究O3型正极材料电化学反应过程中Na^(+)脱嵌行为与结构演变的构效关系对开发高性能正极材料至关重要。本工作以O_(3)-NaNi_(0.4)Fe_(0.2)Mn_(0.4)O_(2)(O3-NFM)正极为研究对象,对其电化学性能、Na^(+)传输动力学性质及相变机制展开了系统研究。电化学测试结果表明,O3-NFM在充电至高压(4.3 V)时可脱出0.84 mol Na^(+),发挥约201.9 mAh/g的比容量,但可逆性欠佳。当截止电压为4.0 V时,该正极材料循环性能优异,原位XRD结果进一步证明了电化学反应过程中O3-P3/O3-P3-P3/O3-O3的可逆结构转变。循环伏安(CV)曲线和恒电流间歇滴定技术(GITT)结果表明其具有快速的钠离子扩散速率,从而表现出较好的倍率性能。本研究为探索以O3-NFM为基础的正极材料结构设计及性能调控提供了理论基础。 相似文献
8.
李尚倬龙禹彤刘朝孟高宣雯骆文彬 《储能科学与技术》2023,(5):1348-1363
钾离子电池(PIBs)由于钾金属资源丰富、成本低廉、环境友好及能量密度高等优点,已成为替代锂离子电池(LIBs)的理想新型储能体系。尽管近年来PIBs在负极领域的研究已经取得了显著进展,但正极材料的研究缓慢,其设计和应用面临可逆比容量低、循环稳定性差、能量密度不理想等问题。因此,发现和设计正极材料对构建用于实际应用的钾离子(K^(+))电池至关重要。由于聚阴离子材料在LIBs和钠离子电池(NIBs)中的成功应用,近年来,人们也将研究集中于PIBs的聚阴离子材料。聚阴离子材料具有氧化还原电位高、发生有利的感应效应、安全性高、热稳定性和结构稳定性良好等优点,可以实现较为稳定的容量存储,但是其可逆容量低、导电性差等问题仍需解决。本篇综述针对钾离子电池聚阴离子正极材料的研究进行了综述和讨论,以探究聚阴离子正极材料发展设计潜力和研究空间为目的,集中讨论了磷酸盐、氟磷酸盐、焦磷酸盐、硫酸盐类材料的机理和结构的发展现状,总结了当前聚阴离子类正极材料设计的主要理念,并对聚阴离子正极材料的改性研究提出了一些建议和前景。 相似文献
9.
锂/氟化碳(Li/CF_(x))一次电池是目前能量密度最高的化学电源,具有输出电压稳定、安全性好、使用温度范围宽和自放电率低等特点,在军事(单兵作战系统)、医疗(心脏起搏器)、太空探索(空间站)等关键领域具有无可替代的重要性。然而,氟化碳材料的电子导电性较差,很大程度地影响了电化学反应的电极过程动力学,导致Li/CF_(x)一次电池存在高倍率放电性能差、初始放电电压延迟严重、放电过程中发热量大等问题。本文通过对近期相关文献的探讨,首先综述了Li/CF_(x)一次电池在放电机理方面的研究进展,包括两相放电反应机理模型、生成石墨层间化合物中间相的放电反应机理模型、“核-壳”模型反应机理和边缘传播放电反应机理以及最近刚被提出的三步放电反应机理等。其次,重点分析了Li/CF_(x)一次电池面临问题的解决方法,包括氟化碳材料前驱体的选择、氟化方法的改进、复合材料的构建以及电解液的改性和优化方法。其中,氟化碳纳米管、氟化富勒烯、氟化石墨烯等新型氟化碳基材料的应用为氟化碳的发展提供了新的前景。在复合材料的构建策略上,导电聚合物、金属纳米颗粒、氧化物的加入可显著降低电压延迟时间和提升倍率性能。在电解液的调控策略上,氟离子结合剂的引入和氟化锂晶体生长动力学的计算,对于溶解氟化锂和控制氟化锂的生长具有重要作用,有望实现兼具高能量密度和高功率密度的宽温域Li/CF_(x)一次电池。 相似文献
10.
Fe_(3)O_(4)作为锂离子电池负极材料,在充放电时体积变化较大,导致其容量衰减严重。目前,碳包覆是解决这个问题的主要方式之一。本工作以氧化石墨烯(GO)和Fe^(2+)为原料,用一步水热法合成了三维石墨烯片包覆Fe_(3)O_(4)纳米颗粒3DG@Fe_(3)O_(4)复合材料。使用傅里叶红外光谱(FT-IR)仪、热重分析(TGA)仪、X射线衍射(XRD)仪、拉曼光谱(Raman)仪、扫描电子显微镜(SEM)对复合物进行表征,研究结果表明,复合材料呈现石墨烯(G)片包覆Fe_(3)O_(4)纳米颗粒的三明治结构。同时采用了恒流充放电(GCPL)、循环伏安(CV)以及交流阻抗(EIS)等电化学测试方法,着重研究了Fe_(3)O_(4)含量对其电化学性能的影响,Fe_(3)O_(4)质量分数为83.2%的3DG@Fe_(3)O_(4)-2电极具有最高的比容量和循环性能,在0.1 A/g的电流密度下的首次放电比容量为1412.33 mAh/g,循环100次后的放电比容量为577 mAh/g,是纯Fe_(3)O_(4)电极材料经历100次循环后的6.5倍。一步水热合成方法具有操作简单、合成条件温和及无需额外添加还原剂等优点;制备的复合电极相比纯Fe_(3)O_(4)具有电极容量高、循环稳定性能好的优势,有助于推动Fe_(3)O_(4)基负极材料在电化学领域中的应用。 相似文献
11.
近年来,钠离子电池凭借钠资源储量丰富、分布广泛、价格低廉、绿色可持续发展、安全稳定、集成效率高、快速充电性能优异、低温性能好等一系列优势被认为是锂离子电池当前最好且最有发展前景的互补品,也是未来发展大规模电化学储能最具前景的系统之一。然而阻碍钠离子电池发展的因素是正极材料体系结构易发生相变、放电比容量不够高、循环性能不够好等问题。目前,钠离子电池正极材料的研究中过渡金属氧化物材料表现出更多样的结构种类、更优的结构稳定性、更高的比容量、良好的充放电循环性能和其他优异的电化学性能。本文针对锰酸钠正极材料微观以及宏观结构的研究进展进行归纳总结,着重对不同钠含量的锰酸钠材料通过三种不同位点(钠位、锰位和氧位)掺杂以及包覆的手段进行系统深入的研究,详细展示并论述了不同元素不同位点掺杂以及不同包覆手段所带来的增益效果。在未来的发展过程中,应加强对微观宏观结构的进一步提升,拓展多元素多位点掺杂种类、掺杂比例、搭配类型和包覆材料种类等,提升包覆技术,并不断加强钠离子电池电解液、负极材料等配件的创新与发展。 相似文献
12.
通过固态电解质构建的全固态锂离子电池具有极高的安全性及可靠性,是目前锂离子电池领域的研究热点。其中复合固态电解质既改善了聚合物电解质力学性能差、离子电导率低等缺点又解决了无机固态电解质的界面接触等问题。本文通过溶胶-凝胶法制备了掺杂了Al、Mo的Li_(7)La_(3)Zr_(2)O_(12)粉体,并将其与PEO(聚环氧乙烷)复合,利用溶液浇筑法制备了不同比例的复合固态电解质,考察其在全固态电池中的性能。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、差示扫描量热仪(DSC)等测试手段对Li_(6.65)Al_(0.05)La_(3)Zr_(1.9)Mo_(0.1)O_(12)粉体以及复合固态电解质进行了材料表征。同时利用电化学工作站、电池充放电测试系统测试了复合固态电解质在全固态电池中的应用性能。与纯PEO电解质相比,复合15%Li_(6.65)Al_(0.05)La_(3)Zr_(1.9)Mo_(0.1)O_(12)的电解质电化学窗口为4.79V,可以在0.2mA/cm^(2)下稳定循环500h,在0.1C倍率下,循环100圈容量保持率为89.9%。 相似文献
13.
作为钠离子电池负极材料之一的铁氧化物,其理论比容量高,但在循环过程中会发生较大的体积膨胀,表现出明显的容量衰减。以柔性碳基材料为基底原位构建纳米结构的金属氧化物可作为一种缓解其体积膨胀的有效手段。本文采用化学气相沉积法在泡沫铜上原位生长了多孔碳纳米纤维(CNFs),以此为柔性导电基底,通过盐溶液浸渍与退火相结合的简便方法制备得到三维多级Fe_(3)O_(4)/碳纳米纤维(3D Fe_(3)O_(4)/CNFs)一体化电极电极,并将其用作钠离子电池负极。使用X射线光电子能谱(XPS),拉曼光谱(Raman),扫描电子显微镜(SEM)对样品进行组分分析及形貌表征。使用恒流充放电(GCD),循环伏安(CV),电化学阻抗(EIS)对其进行电化学性能表征。结果表明,尺寸在50~100 nm的纳米棒状Fe_(3)O_(4)均匀分散在多孔碳纳米纤维上,构建出富含孔隙的三维多级结构。在0.1 A/g的电流密度下,3D Fe_(3)O_(4)/CNFs一体化电极经过100圈循环后,其比容量可达893.4 mAh/g,优于CNFs电极,并表现出更快的钠离子扩散动力学,同时具有较好的电化学可逆性。本文为金属氧化物/碳基复合电极研究提供了思路与实验依据。 相似文献
14.
随着便携式电子设备、新能源电动汽车和储能电网的快速发展,人类对经济高效的电化学储能(EES)系统的需求越来越大。锂硫电池由于成本低、取材广、效率高、质量轻、硫元素零污染等优势,已成为当前EES系统中应用范围最广的储能器件之一。然而,因正极硫的利用率低、锂枝晶生长、体积膨胀和长链多硫化物的穿梭效应等问题,严重制约了其商业化进程。因此,寻找新的硫宿主材料迫在眉睫。本工作通过开发煤基氧化石墨烯复合材料试图解决上述问题,设计了一种含氧官能团的煤基氧化石墨烯,对多硫化物的空间限域或物理捕捉。并通过煤基石墨烯(G)和被氧化后的煤基氧化石墨烯(GO),组装成完整的扣式锂硫电池;实现了在高倍率3 C条件下进行500次长循环,比容量从初始622.5 mAh/g维持到448.2 mAh/g,比容量保持率为72%,比容量的衰减率为0.056%,经过多次验证,得出含有丰富功能基团的煤基氧化石墨烯能够为中间产物多硫化锂提供更丰富的极性位点,在一定程度上显示出更高的亲硫性,再经过一系列的电化学表征来证明该材料在锂硫电池中的优势,为锂硫电池的进一步发展提供借鉴和方法。 相似文献
15.
O3型层状过渡金属氧化物NaNi_(0.5)Mn_(0.5)O_(2)是目前最有应用前景的钠离子电池正极材料之一。然而,由于在充放电过程中过渡金属层的滑移,O3型正极材料伴随着多重不可逆的复杂相变,所以其应用受到了限制。另外,O3-NaNi_(0.5)Mn_(0.5)O_(2)正极的容量主要集中在3 V左右的低电压区域,在充放电过程中这一区域很容易发生O3-P3相变,所以限制了其能量密度。本研究提出了一种精准的化学元素取代策略来解决这些问题。通过Sn^(4+)掺杂来抑制过渡金属层的滑移,从而抑制循环过程中的不可逆相转变。同时,由于Sn^(4+)具有独特的外层电子结构,在d轨道上没有单电子,无法与O 2p轨道发生杂化,所以O 2p轨道就只与Ni eg轨道发生杂化,增大了Ni—O键的离子度,提高了Ni的氧化还原电势。因此,NaNi_(0.5)Sn_(0.5)O_(2)正极材料的中值电压高达3.28 V。同时,该电极材料表现出较为优异的电化学性能和动力学性质。本工作基于分子轨道杂化对O3型正极材料的氧化还原电势实现了可控调制,从而获得了具有高电压的钠离子电池层状氧化物正极材料。 相似文献
16.
以聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物(P123)为结构导向剂,正硅酸乙酯(TEOS)为硅源,柠檬酸为碳源,采用水热法得到凝胶状二氧化硅/碳前驱体,采用旋转蒸发方式去除溶剂,通过高温热处理,得到棒状硅氧基碳负极活性材料,提高浆料体系无紧密束缚环境下硅碳材料的性能。借助X射线衍射(XRD)仪、无机元素分析(EA)仪、比表面积及孔隙度分析仪和扫描电子显微镜(SEM)对棒状硅基材料进行结构和形貌表征。结果表明,合成的棒状硅基材料首尾相连,形成莲藕链束,长度约为1~3μm,直径约为200 nm,孔径为6.9 nm,比表面积为282 m^(2)/g。与管长>5μm,比表面积900 m^(2)/g,直径1~2 nm的单壁碳纳米管导电剂在电解液体系中形成长程、短程互补的多级网络,加上大量介孔的存在,有利于保持浆料悬浮稳定性。用世伟洛克电池进行电化学性能测试,电化学测试结果表明首次放电比容量为1300 mAh/g,充电比容量为726 mAh/g,首效为55.8%,在0.05 C下,循环50次充电比容量从726 mAh/g变为557 mAh/g,比容量保持率为76.7%。本工作在用P123为结构导向剂制备二氧化硅的过程中,引入碳源,得到同时具有碳包覆和碳还原二氧化硅的硅基材料,避免使用镁热还原二氧化硅,再碳包覆带来的复杂工艺流程。 相似文献
17.
Cr8O21具有高比容量、低成本等优点,是一种具有潜在应用前景的锂电池正极材料。但是,Cr8O21的首次循环不可逆容量大,循环稳定性较差,主要用于一次电池。目前,通常在高压或常压氧气气氛中合成Cr8O21,制备过程危险且容易生成杂相。本文工作以CrO3为原料,在空气气氛中通过两步热解法制得了纯相Cr8O21,考察了其作为锂电池正极材料的电化学性能,并利用X射线光电子能谱(XPS)和X射线衍射(XRD)初步探索了Cr8O21的电化学反应机制。研究结果表明,所制备的Cr8O21在0.1 C倍率下具有高达400.4 mAh/g的初始放电比容量和1218 Wh/kg的比能量;可逆比容量为304.4 mAh/g,100次循环后的可逆容量保持率达88.7%,表现出良好的电化学性能和循环稳定性。Cr8 相似文献
18.
兼具高能量密度、高功率密度、长循环寿命性能的正极材料是当下电池储能材料研究的重点,也是储能市场的重要需求。富锂锰基正极材料(LRMO)因其极高的放电比容量(≥250 mAh/g)、较高的工作电压(4.2~4.5 V vs.Li/Li^(+))、低成本且环境友好等优点成为当下最具应用前景的正极材料之一。虽然金属阳离子和阴离子依次或同时进行的氧化还原反应使LRMO材料的容量超过了传统层状氧化物,但首次不可逆容量高、循环和倍率性能较差等一系列的问题阻碍了其工程化应用,这与材料中阴离子氧化还原反应紧密相关。本文首先介绍了LRMO材料的晶体结构,然后基于分子轨道理论,回顾了LRMO材料的能带结构与阴阳离子氧化还原反应的联系,总结了阴离子氧化还原反应对富锂锰基正极材料的影响,包括高容量、不可逆的氧流失、过渡金属离子迁移。同时,分别从过渡金属比例调节、表面修饰、离子掺杂三个方面总结了近些年国内外研究人员针对阴离子氧化还原反应造成的负面影响设计的改性策略。最后展望了LRMO材料理论研究与应用研究的大致方向。 相似文献
19.
以铵根离子为载流子的可充电水系铵离子电池具有诸多本征优势,然而对于其全电池的研究与探索仍然处于起步阶段。本文首次报道了PTCDI//δ-MnO_(2)铵离子电池体系。该电池采用0.5 mol/L NH_(4)Ac作为电解液,以层状δ-MnO_(2)作为正极材料,3,4,9,10-四甲酰二亚胺(PTCDI)作为有机负极,可以在0~1.5 V电压窗口内稳定工作。本文中的层状δ-MnO_(2)正极材料采用简单的KMnO_(4)热分解法制备,并通过XRD、SEM、TEM、XPS、FTIR、拉曼光谱等手段对δ-MnO_(2)纳米片正极进行了表征。实验研究结果表明,通过合理搭配PTCDI纳米粒子负极,该全电池在0.5 A/g的电流密度下循环500圈后,容量保持率仍为初始容量的92%,库仑效率接近100%,具有优异的循环稳定性。同时系统地研究了δ-MnO_(2)纳米片正极的储能机理以及PTCDI有机负极的储铵动力学特性。非原位XPS光谱结果表明NH^(4+)可以在正极材料中实现可逆地脱嵌。该全电池具有较高的电压窗口,可以较为轻松地向风扇及LED灯等常见小型电器供电,具有良好的发展前景。综上所述,新材料的开发对构建新一代安全环保的水系铵离子电池具有重要意义。 相似文献
20.
王跃迪仇中柱吴渺朱燕艳屈蒙 《储能科学与技术》2023,(4):1034-1044
超级电容器因其功率密度高、充放电迅速、循环寿命长等优点被认为是一种极具发展前景的新型储能装置,其中电极材料的研究是超级电容器发展的关键,材料的微观结构很大程度上决定了材料的电化学性能。本工作采用水热法及热处理制备了NiMoO_(4)/NiCo_(2)S_(4)复合材料,并应用于超级电容器电极。对纳米复合材料的组成及微观结构通过X-射线衍射(XRD)、能量色散X-射线能谱仪(EDS)、X-射线光电子射线能谱仪(XPS)、扫描电子显微镜(SEM)和氮气吸脱附法进行表征,结果表明复合材料具有多孔三维网状结构,其独特的结构减少了NiMoO_(4)的团聚,增加了材料比表面积,展现出更加优异的电化学性能:在1 A/g的电流密度下,比电容为847.2 F/g(高于NiMoO_(4)电极的576.1 F/g和NiCo_(2)S_(4)电极的734.3 F/g),即使在10 A/g的电流密度下仍保留466.7 F/g的比电容。当NiMoO_(4)/NiCo_(2)S_(4)复合材料作为正极、活性炭作为负极构成非对称超级电容器时,在1 A/g的电流密度下循环2000圈后,仍保留76%的比电容,具有良好的循环稳定性。本研究对NiMoO_(4)作为超级电容器电极材料的发展提供参考,为高比电容、高循环稳定性电极材料的研发提供实验依据。 相似文献