首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A donor-acceptor red fluorescent dye bis(4-(N-(9,9-diethyl-2-fluorenyl)-3,5-dimethyl-phenylamino)phenyl)fumaronitrile (FMPAFN), and a blue fluorescent dye 2,7-bis(N-2-(9,9-diethylfluorenyl)-3,5-dimethylphenylamino)-9,9-diethylfluorene (FMPAEF), were synthesized, characterized, and used as active materials in non-doped electroluminescent devices. Emission peaks from three-layered or four-layered devices using FMPAFN dye centered at 680 or 684 nm with their Commision Internationale de I'Eclairage (CIE) color coordinates of (0.671, 0.310) or (0.673, 0.309). Current efficiencies of 1.89 or 3.55 cd/A for the FMPAFN devices were achieved, respectively. Similar non-doped three-layered or four-layered devices based on blue FMPAEF dye emitted at 424 or 456 nm with full widths at half maximum of 63 and 101 nm and CIE (x,y) of (0.181, 0.138) or (0.185, 0.189), respectively. Current efficiencies of the FMPAEF devices were 0.57 or 1.04 cd/A. In these devices, both dyes are multifunctional, acting as emitters as well as hole-transporting materials. The emission colors were tuned by both the non-planar arylamino group and the centric core (fumaronitrile or fluorene bridge), revealing potential applications in electroluminescent devices.  相似文献   

2.
Novel N1,N3,N5-tris(9,9-diphenyl-9H-fluroen-2-yl)-N1,N3,N5-triphenylbenzene-1,3,5-triamine (TFADB) was synthesized and characterized as a hole-injecting material (HIM) for organic light-emitting devices (OLEDs). By incorporating fluorene group TFADB shows a high glass-transition temperature Tg > 168 °C, indicative of excellent thermal stability. TFADB-based devices exhibited the highest performance in terms of the maximum current efficiency (6.0 cd/A), maximum power efficiency (4.0 lm/W), which is improved than that of the standard device based on 4-4′-4″Tris(N-(naphthalene-2-yl)-N-phenyl-amino)triphenylamine (2T-NATA) (5.2 cd/A, 3.6 lm/W). This material could be a promising hole-injecting material, especially for the high temperature applications of OLEDs and other organic electronic devices.  相似文献   

3.
《Optical Materials》2014,36(12):2201-2207
New green host materials 1-(9,9-diphenyl-9H-fluorene-2-yl)-2-phenyl-1H-benzimidazole and 1-(9,9′-spirobifluorene-2-yl)-2-phenyl-1H-benzimidazole for solution-processed green phosphorescent organic light-emitting devices have been designed and synthesized by attaching the electron transporting benzimidazole units to the rigid fluorene units. Owing to the non-planar structures, which decrease the π conjugation length of fluorene and benzimidazole rings, these fluorene derived derivatives show high triplet energy. The high triplet energy of newly host materials ensures efficient energy transfer from the host to the triplet emitter tris(2-phenylpyridine)iridium. Furthermore, the thermal, photophysical, electrochemical properties and crystal structures of 1-(9,9-diphenyl-9H-fluorene-2-yl)-2-phenyl-1H-benzimidazole and 1-(9,9′-spirobifluorene-2-yl)-2-phenyl-1H-benzimidazole were investigated. The solution-processed single-layer green device using 1-(9,9-diphenyl-9H-fluorene-2-yl)-2-phenyl-1H-benzimidazole as the host for the phosphorescence emitter tris(2-phenylpyridine)iridium showed the maximum luminance efficiencies of 10.1 cd/A. This result demonstrated that the newly synthesized, fluorene-based rigid host materials are advantageous for fabrication of highly efficient green phosphorescent organic light-emitting diodes.  相似文献   

4.
Photo- and electroluminescence of five bithiophene disubstituted 1,3,4-thiadiazoles, constituting a new class of solution processable materials for organic opto-electronics, were studied. It was found that the introduction of alkyl solubilizing substituents bathochromically shifted the photo- and electroluminescence bands. The most pronounced effect was observed for the substitution at the Cα position which changed the emitting light color from bluish to green. All five derivatives were tested in host/guest type organic light emitting diodes (OLEDs) with either poly(N-vinylcarbazole) (PVK) or poly(N-vinylcarbazole) + 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PVK + PBD) matrices. The latter matrix turned out especially well suited for these guest molecules yielding devices of varying color coordinates. The best luminance (750 cd/m2) was measured for 2,5-bis(5′-octyl-2,2′-bithiophene-5-yl)-1,3,4-thiadiazole with the luminous efficiency exceeding 0.4 cd/A.  相似文献   

5.
A series of new phenyl-based conjugated copolymers has been synthesized and investigated by vibrational and photoluminescence spectroscopy (PL). The materials are: poly(1,4-phenylene-alt-3,6-pyridazine) (COP-PIR), poly(9,9-dioctylfluorene)-co-quaterphenylene (COP-PPP) and poly[(1,4-phenylene-alt-3,6-pyridazine)-co-(1,4-phenylene-alt-9,9-dioctylfluorene)] (COP-PIR-FLUOR), with 3.5% of fluorene. COP-PPP and COP-PIR-FLUOR have high fluorescence quantum yields in solution. Infrared and Raman spectra were used to check the chemical structure of the compounds. The copolymers exhibit blue emission ranging from 2.8 to 3.6 eV when excited at Eexc = 4.13 eV. Stokes-shift values were estimated on pristine samples in their condensed state from steady-state PL-emission and PL-excitation spectra. They suggest a difference in the torsional angle between the molecular configuration of the polymer blocks at the absorption and PL transitions and also in the photoexcitation diffusion. Additionally, the time-resolved PL of these materials has been investigated by using 100 fs laser pulses at Eexc = 4.64 eV and a streak camera. Results show very fast biexponential kinetics for the two fluorene-based polymers with decay times below 300 ps indicating both intramolecular, fast radiative recombination and migration of photogenerated electron–hole pairs. By contrast, the PL of COP-PIR is less intense and longer lived, indicating that excitons are confined to the chains in this polymer.  相似文献   

6.
《Optical Materials》2014,36(12):2072-2076
Electro-active materials containing 6,6′-diaryl-substituted [3,3′]bicarbazole core were synthesized by multistep synthetic rote and characterized. The derivatives were examined by differential scanning calorimetry and demonstrated formation of amorphous materials with rather high glass transition temperatures. The synthesized compounds have been tested as hole transporting layers in simple OLED devices with Alq3 as the emitter/electron transporting layer. The green devices containing hole transporting films of diphenyl-9,9′-diethyl-[3,3′]bicarbazole exhibited the best overall performance (turn-on voltage: 3.5 V, maximum photometric efficiency: 4.2 cd/A, maximum brightness: ∼12,200 cd/m2).  相似文献   

7.
We used various emissive layer (EML) structures with ultrathin red EMLs to enhance the charge carrier balance and carrier recombination rate in blue PHOLED devices. These EML materials have different energy gaps between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels. The ultrathin red EMLs, which were inserted in between the blue EMLs, effectively confined the charge carriers in EML, and increased the carrier recombination rate. The thickness of the individual EML was optimized, under 30 nm of the total thickness of EML. The blue PHOLEDs with ultrathin red EMLs achieved a luminous efficiency of 19.24 cd/A, which was 28.7% higher than those without ultrathin red EMLs, and the maximum external quantum efficiency was 11.81% at 500 cd/m2.  相似文献   

8.
The improved external quantum efficiency (EQE) and reduced roll-off properties of blue phosphorescent organic light-emitting diodes (PHOLEDs), were fabricated with structure, ITO/NPB (400 Å)/TCTA (200 Å)/mCP:FIrpic (7%)(300 Å)/TPBi (300 Å)/Liq (20 Å)/Al (800 Å) by incorporating an 4,4′,4′′-tris(carbazol-9-yl)-triphenylamine (TCTA) interlayer. We compared the properties of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and 1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi) as the electron transport layer (ETL) with a typical structure of hole transport layer (HTL)/emissive layer (EML)/ETL in OLEDs and utilized inter-layer in the optimized structure to enhance EQE to 52% at 5.5 V, also stabilize the roll-off of 23%. The use of inter-layer in blue PHOLEDs exhibits a current efficiency of 10.04 cd/A, an EQE of 6.20% at 5.5 V and the highest luminance of 10310 cd/m2 at 9.5 V. We have identified the properties of electroluminescence through the inter-layer in blue PHOLEDs which can be divided into singlet excitons and triplet excitons which emit fluorescence of N,N′-bis(1-naphthalenyl)-N,N′-bis-phenyl-(1,1-biphenyl)-4,4-diamine (NPB) at 420 nm and phosphorescence of Iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C2′] picolinate (FIrpic) at 470 nm, 494 nm, respectively.  相似文献   

9.
采用迈克尔加成反应制备了单体2,7-二溴-9,9-二(丙酸二甲氨基乙酯)芴(FDMAEA);采用Suzuki偶合反应制备了不同FDMAEA结构单元含量的醇溶性9,9-二(丙酸二甲氨基乙酯)芴-9,9-二辛基芴共聚物(PFDMAEA)。通过核磁共振、凝胶渗透色谱、溶解性测试、紫外-可见光光谱、荧光发射光谱等对其进行了分析研究。结果表明,成功合成了2,7-二溴-9,9-二(丙酸二甲氨基乙酯)芴及9,9-二(丙酸二甲氨基乙酯)芴-9,9-二辛基芴共聚物。该共聚物在极性溶剂,如甲醇中具有良好的溶解性。由于含有DMAEA支链的PFDMAEA主链容易扭曲,共轭长度变短,共聚物的紫外吸收光谱和荧光光谱随着FDMAEA含量的增加而发生蓝移。荧光发光光谱研究表明,溶剂的极性、溶液的浓度、温度和pH值对共聚物的发光性能有很大的影响。随着溶剂极性增大,共聚物的荧光发射强度不断增加。荧光发射强度随溶液浓度的增加先增加后降低,随着溶液温度的上升而降低。当溶液pH值由1增大到14时,荧光强度不断降低,直至淬灭。  相似文献   

10.
New triphenylamine containing azomethine diimides and two kinds of poly(azomethine imide)s, i.e., linear and branched were synthesized. These compounds were prepared from two diamines, that is, N,N′-bis(4-amino-2,3,5,6-tetramethylphenyl)phtalene-1,2,4,5-dicarboximide (DAPhDI), N,N′-bis(5-aminonaphtalen)naphthalene-1,4,5,8-dicarboxyimide (DANDI-2) and 4-formyltriphenylamine, 4,4′-diformyltriphenylamine and 4,4′,4″-triformyltriphenylamine. The structures of the compounds were characterized by means of FTIR, 1H NMR spectroscopy and elemental analysis; the results show an agreement with the proposed structure. Thermal properties of prepared azomethine diimides and polymers were evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Obtained compounds exhibited high thermal stability with 5% weight-loss temperatures above 390 °C. Azomethine diimides exhibited glass-forming properties with high glass-transition temperatures 216 and 308 °C. Optical properties of the prepared compounds were investigated by UV–vis and photoluminescence (PL) measurements. All compounds emitted blue light in NMP solution and in solid state as blend with PMMA. The electrochemical properties, that is, orbital energies and resulting energy gap were estimated based on cyclic voltammetry (CV). All synthesized material showed reversible reduction process, furthermore AzPhDI and AzNDI showed partially reversible oxidation process. Electrochemical band gap was found in the range 1.23–1.70 eV. Low molecular weight model compounds were tested as bipolar host materials in blue phosphorescent organic light emitting diodes (OLEDs). The devices exhibited turn-on voltages of about 5.5 V and maximum brightness of 40–220 cd/m2.  相似文献   

11.
《Optical Materials》2005,27(1):109-113
We synthesized three bithiophene based organic luminescence materials named as 5,5-bis(p-N,N-dimethylaminostyryl)-2,2-bithiophene (BMSBT), 5,5-bis(p-N,N-diethylaminostyryl)-2,2-bithiophene; (BESBT) and 5,5-bis(p-N-carbazoylstyryl)-2,2-bithiophene (BCSBT). Their single-photon excited fluorescence locate in the range; of 520–530 nm with the quantum yield around 20%. When excited by 200 fs laser pluses, these compounds can emit strong two-photon excited fluorescence. The two-photon absorption cross sections of BMSBT, BESBT and BCSBT are detected to be 54 × 10−50, 102 × 10−50 and 124 × 10−50 (cm4 s)/photon respectively.  相似文献   

12.
In this paper, we have designed four diphenylaminofluorenylstyrene derivatives end-capped with heterocyclic aromatic groups, such as 9-phenylcabazole, 4-dibenzofuran, 2-benzoxazole, 2-quinoxaline, respectively. These materials showed blue to red fluorescence with maximum emission wavelengths of 476–611 nm, respectively, which were dependent on the structural and electronic nature of end-capping groups. To explore the electroluminescent properties of these materials, multilayer OLEDs were fabricated in the following sequence: ITO/DNTPD (40 nm)/NPB (20 nm)/2% doped in MADN (20 nm)/Alq3 (40 nm)/Liq. (1 nm)/Al. Among those, a device exhibited a highly efficient blue emission with the maximum luminance of 14,480 cd/m2 at 9 V, the luminous efficiency of 5.38 cd/A at 20 mA/cm2, power efficiency of 2.77 lm/W at 20 mA/cm2, and CIEx,y coordinates of (0.147, 0.152) at 8 V, respectively.  相似文献   

13.
《Optical Materials》2013,35(12):2025-2029
White fluorescent OLED devices with a 10 nm thick blue-emitting layer and a 31 nm thick orange-emitting layer have been fabricated, where the blue-emitting layer is stacked on a hole transport layer. An interlayer was inserted between the two emitting layers. The thickness of the interlayer was changed among 0.3, 0.4, and 1.0 nm. White emission with CIE coordinates close to (0.33, 0.33) was observed from all the OLEDs. OLED with 0.3 nm thick interlayer gives the highest maximum luminous efficiency (11 cd/A), power efficiency (9 lm/W), and external quantum efficiency (5.02%). The external quantum efficiency becomes low with increasing the interlayer thickness from 0 nm to 1.0 nm. When the location of the blue- and orange-emitting layers is reversed, white emission was not obtained because of too weak blue emission. It is suggested that the electron–hole recombination zone decreases nearly exponentially with a distance from the hole transport layer.  相似文献   

14.
Ti–10Mo alloy powder were compressed by high velocity compaction (HVC) in a cylinderical form of height/diameter (h/d) in die 0.56 (sample A) and 0.8 (sample B). Compactions were conducted to determine the effect of impact force per unit area of powder filled in die for densification and mechanical properties of Ti–10Mo samples. The micro structural characterization of samples were performed by scanning electron microscope (SEM). The mechanical properties of the compressed samples such as Vickers hardness, bending strength, and tensile strength were measured. Experimental results showed that the density and mechanical properties of sample A and sample B increased gradually with an increase in impact force and decreased with an increase in height/diameter ratio. The relative green density for sample A reached up to 90.86% at impact force per unit area 1615 N mm−2. For sample B, it reached 79.71% at impact force per unit area 1131 N mm−2. The sintered sample A exhibited a maximum relative density of 99.14%, Vickers hardness of 387 HV, bending strength of 2090.72 MPa, and tensile strength of 749.82 MPa. Sample B revealed a maximum relative sintered density of 97.73%, Vickers hardness of 376 HV, bending strength 1259.94 MPa and tensile strength 450.25 MPa. The spring back of the samples decreased with an increase in impact force.  相似文献   

15.
Efficient white polymer light-emitting diodes based on the polymer blend of poly(2-(4′-(diphenylamino)phenylenevinyl)-1,4-phenylene-alt-9,9-n-dihexylfluorene-2,7-diyl) doped with poly{2-[3′,5′-bis(2?-ethylhexyloxy) benzyloxy]-1,4-phenylenevinylene}-co-poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) were fabricated. The electroluminescence (EL) spectrum is easily controlled by changing the dopant concentration. A white light emission was realized on the device with the dopant concentration of 0.194‰ and the emission light is less sensitive to the applied voltage in a wide voltage range. The maximum luminance and the maximum EL efficiency of the single-layer device were 2330 cd/m2 and 0.29 cd/A, respectively. By introducing an Alq3 layer as an electron transporting and hole blocking layer, the overall performance of the double layer device was dramatically improved, the maximum luminance and the maximum EL efficiency reached 3300 cd/m2 and 2.37 cd/A, respectively.  相似文献   

16.
Due to its various uses, Cr contamination has become widespread in a diverse array of environments. The present study was carried out during 2007–2008 to investigate the accumulation potential of metals (Cr, Cu, Fe, Mn, Ni and Zn) and metalloid (As) by green (GA) and blue green (BGA) microalgae growing naturally in selected Cr-contaminated sites in districts Unnao and Kanpur (Uttar Pradesh, India). This investigation is a preliminary work to identify suitable native microalgae for biomonitoring and phytoremediation purposes. A total of 22 GA and 11 BGA were encountered in three seasons (summer, rainy and winter). Among these, the accumulation potential was evaluated in high biomass producing strains of BGA (three) and GA (nine). The maximum accumulation of Cr was shown by Phormedium bohneri (8550 μg g?1 dw) followed by Oscillatoria tenuis (7354 μg g?1 dw), Chlamydomonas angulosa (5325 μg g?1 dw), Ulothrix tenuissima (4564 μg g?1 dw), and Oscillatoria nigra (1862 μg g?1 dw); all of which demonstrated a transfer factor of >10% for Cr. The results also indicate that the phytoplankton diversity was modified by Cr pollution. BGA represented the dominant community where Cr concentration was higher (11.84 and 2.27 mg L?1) (r = 0.695), whereas GA showed negative correlation with respect to Cr concentration (r = ?0.567). In conclusion, different algal species were able to grow in Cr-contaminated sites and to accumulate significant amounts of Cr with a high transfer factor.  相似文献   

17.
Electrical properties, deep traps spectra and luminescence spectra were studied for two undoped a-plane GaN (a-GaN) films grown on r-plane sapphire using metalorganic chemical vapor deposition and differing by structural perfection. For sample A, the a-GaN film was directly deposited on AlN buffer. A two-step growth scheme was implemented for sample B, including an initial islanding growth stage and a subsequent enhanced lateral growth. Preliminary detailed X-ray analysis showed that the stacking faults density was 8 × 105 cm?1 for sample A and 1.7 × 105 cm?1 for sample B. Electrical properties of a-GaN films were largely determined by deep traps with a level near Ec ?0.6 eV, with other prominent traps having the activation energy of 0.25 eV. The Fermi level was pinned by the Ec ?0.6 eV deep traps for sample A, but shifted to the vicinity of the shallower 0.25 eV traps for sample B, most likely due to the reduced density of the 0.6 eV traps. This decrease of deep traps density is accompanied by a very pronounced improvement in the overall luminescence intensity. A correlation of the observed improvement in deep traps spectra and luminescence efficiency with the improved crystalline quality of the films is discussed.  相似文献   

18.
A poly (vinyl chloride)-based membrane of N, N-Dimethyl-N′, N″-bis(4-methoxyphenyl)phosphoramidate (DMP) as a neutral carrier was prepared and investigated as a Tb3+-selective electrode. This electrode constructed with sodium tetraphenylborate (NaTPB) as the anion excluder and 2-nitrophenyl octyl ether (NPOE) as the plasticizer. Its performance was found to be the following: a Nernstian slope of 19.7 ± 0.4 mV per decade across a broad range (1.0 × 10 6 to 1.0 × 10 1 M); a detection limit of 8.0 × 10 7 M between the pH values of 3.5 and 8.0; additionally, the response time was about 10 s; usage of more than 2 months without any potential divergence; good Tb3+ selectivity over a wide variety of other metal ions. The membrane sensor was applied to the Tb3+ recovery from different water samples, determination of fluoride ions in mouth wash samples and the determination of Tb3+ in phosphate rock samples. It was also used as an indicator electrode in the potentiometric titration of Tb3+ ions with EDTA.  相似文献   

19.
《Materials Letters》2005,59(24-25):3002-3006
The synthesis and luminescent study of a new iridium pyrazine complex are reported. The iridium complex [Ir(MDPP)2(acac)] (MDPP=5-methyl-2,3-diphenylpyrazine, acac=acetylacetone) shows strong 1MLCT (singlet metal-to-ligand charge-transfer) and 3MLCT (triplet metal to ligand charge-transfer) absorption at 386 and 507 nm, respectively. Organic light emitting device (OLED) with a configuration of ITO / NPB (30 nm) / NPB: 7% (wt.) Ir(MDPP)2(acac) (25 nm) / BCP (10 nm) / Alq3(30 nm) / Mg : Ag (mass ratio 10 : 1)120 nm / Ag(10 nm) exhibits an external quantum efficiency of 6.02% (power efficiency 9.89 lm W 1 ) and a maximum brightness of 78,924 cd m 2. The device also shows high color purity with a maximum peak at 576 nm without any shoulder.  相似文献   

20.
《Optical Materials》2014,36(12):2241-2249
Undoped and Yttrium doped ZnO nanopowders (Zn1−xYxO, 0  x  0.05) were prepared by sol–gel method and annealed at 500 °C for 4 h under air atmosphere. The prepared nanopowders were characterized by powder X-ray diffraction, energy dispersive X-ray spectra, UV–Visible spectrophotometer and Fourier transform infrared spectroscopy. The EDS analysis confirmed the presence of Y in the ZnO system. Both atomic and weight percentages were nearly equal to their nominal stoichiometry within the experimental error. XRD measurement revealed the prepared nanoparticles have different microstructures without changing a hexagonal wurtzite structure. The calculated average crystallite size decreased from 26.1 to 23.2 nm for x = 0–0.02 then reached 24.1 nm for x = 0.05. The change in lattice parameters was demonstrated by the crystal size, bond length, micro-strain and the quantum confinement effect. The observed blue shift of energy gap from 3.36 eV (Y = 0) to 3. 76 eV (Y = 0.05) (ΔEg = 0.4 eV) revealed the substitution of Y3+ ions into ZnO lattice. The presence of functional groups and the chemical bonding are confirmed by FTIR spectra. The appreciable enhancement of PL intensity with slight blue shift in near band edge (NBE) emission from 396 to 387 nm and a red shift of green band (GB) emission from 513 to 527 nm with large reduction in intensity confirm the substitution of Y into the ZnO lattice. Y-doped ZnO is useful to tune the emission wavelength and hence is appreciable for the development of supersensitive UV detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号