首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of luminescent emission-tunable phosphors Ca8NaGd(PO4)6F2: Eu2+, Mn2+ have been prepared by a combustion-assisted synthesis method. The X-ray diffraction measurement results indicate that the crystal structure of the phosphor is a single phase of Ca8NaGd(PO4)6F2. The photoluminescence (PL) properties of Eu2+ and Mn2+-codoped Ca8NaGd(PO4)6F2 phosphors were also investigated. The phosphors can be efficiently excited by ultraviolet (UV) light and show a blue emission band at about 450 nm and a yellow emission band at about 574 nm, which originated from the Eu2+ ions and the Mn2+ ions, respectively. The efficient energy transfer from the Eu2+ ions to the Mn2+ ions was observed and its mechanism should be a resonant type via a nonradiative dipole–quadrupole interaction. A color-tunable emission in Ca8NaGd(PO4)6F2 phosphors can be realized by Eu2+  Mn2+ energy transfer. Our results indicate that the developed phosphor may be used as a potential white emitting phosphor for UV based white LEDs.  相似文献   

2.
Double-emitting blue phosphor Sr3(PO4)2: Eu2+, Dy3+ was synthesized by solid state reaction under H2 atmosphere. XRD exhibited the pure hexagonal phase of the prepared phosphor. The photoluminescence results showed that all samples had intense broad absorption band between 250 and 450 nm, which matched well with the near-UV (350–420 nm) emission band of InGaN-based chips. The emission spectrum of Sr3(PO4)2: Eu2+, Dy3+ consisted of two broad bands, peaked at 485 nm and 410 nm, which originated from two luminescent centers, related to 4f65d1  4f7 transition of Eu2+ in six-coordinated Sr(I) and ten-coordinated Sr(II) sites respectively. The intensity ratio of two emission bands could be easily tuned by adjusting Dy3+ co-doping content, which resulted in color-tunable luminescence in bluish green region to purplish blue region.  相似文献   

3.
The Ba2Mg(PO4)2:Eu2+, Mn2+ phosphor is synthesized by a co-precipitation method. Crystal phase, morphology, excitation and emission spectra of sample phosphors are analyzed by XRD, SEM and FL, respectively. The results indicate particles synthesized by a co-precipitation method have a smaller size in diameter than that synthesized by conventional solid-state reaction method. Emission spectra of BMP:Eu2+, Mn2+ phosphor show a broad blue and a broad yellow emission bands with two peaks at about 456 nm and 575 nm under 380 nm excitation. An overlap between Eu2+ emission band and Mn2+ excitation band proves the existence of energy transfer from Eu2+ to Mn2+. Emitting color of the BMP:Eu2+, Mn2+ phosphor could be tuned by adjusting relative contents of Eu2+ and Mn2+ owing to energy transfer formula. Therefore, BMP:Eu2+, Mn2+ may be considered as a potential candidate for phosphor for near-UV white LED.  相似文献   

4.
RbCaGd(PO4)2 doped with Ce3+, Mn2+ was synthesized by the sol-gel method. The crystal structure and crystallographic location of Ce3+ in RbCaGd(PO4)2 were identified by Rietveld refinement. Powder X-ray diffraction (XRD) revealed that the structure of RbCaGd(PO4)2:Ce3+ compounds is hexagonal structure which is similar to that of hexagonal LnPO4 with the lattice constant of a = b = 7.005(57) Å, c = 6.352(05) Å, and V (cell volume) = 269.980 Å3. The photoluminescence behavior and emission mechanism were studied systematically by doping activators in the RbCaGd(PO4)2 host. The Mn2+ incorporated RbCaGd(PO4)2:Ce3+, Mn2+ compounds exhibited blue emission from the parity- and spin-allowed f-d transition of Ce3+ and orange-to-red emission from the forbidden 4T1  6A1 transition of Mn2+. The emission chromaticity coordinates of RbCaGd(PO4)2:0.10Ce3+, xMn2+ (x = 0.16, 0.25) are close to the white region due to an energy transfer process and the energy transfer mechanism from Ce3+ to Mn2+ in the RbCaGd(PO4)2 host was dominated by dipole-dipole interactions.  相似文献   

5.
A green-emitting phosphor of Eu2+-activated Sr5(PO4)2(SiO4) was synthesized by the conventional solid-state reaction. It was characterized by photoluminescence excitation and emission spectra, and lifetimes. In Sr5(PO4)2(SiO4):Eu2+, there are at least two distinguishable Eu2+ sites, which result in one broad emission situating at about 495 nm and 560 nm. The phosphor can be efficiently excited in the wavelength range of 250–440 nm where the near UV (~ 395 nm) Ga(In)N LED is well matched. The dependence of luminescence intensities on temperature was investigated. With the increasing of temperature, the luminescence of the phosphor shows good thermal stability and stable color chromaticity. The luminescence characteristics indicate that this phosphor has a potential application as a white light emitting diode phosphor.  相似文献   

6.
A series of Sr3La(PO4)3:Eu2+/Mn2+ phosphors were synthesized by a solid state reaction. The phase and the optical properties of the synthesized phosphors were investigated. The XRD results indicate that the doped Eu2+ and Mn2+ ions do not change the phase of Sr3La(PO4)3. The peak wavelengths of Eu2+ single doped and Eu2+/Mn2+ codoped Sr3La(PO4)3 phosphors shift to longer wavelength due to the larger crystal field splitting for Eu2+ and Mn2+. The increases of crystal field splitting for Eu2+ and Mn2+ are induced by the substitution of Sr2+ by Eu2+ and Mn2+ in Sr3La(PO4)3 host. Due to energy transfer from Eu2+ to Mn2+ in Sr3La(PO4)3:Eu2+/Mn2+ phosphors, tunable luminescence was obtained by changing the concentration of Mn2+. And the white light was emitted by Sr3La(PO4)3:3.0 mol%Eu2+/4.0 mol%Mn2+ and Sr3La(PO4)3:3.0 mol%Eu2+/5.0 mol%Mn2+ phosphors.  相似文献   

7.
In this paper, a cyan-emitting phosphor Ca3(PO4)2:Eu2+ (TCP:Eu2+) was synthesized and evaluated as a candidate for white light emitting diodes (WLEDs). This phosphor shows strong and broad absorption in 250–450 nm region, but the emission spectrum is prominent at around 480 nm. The emission intensity of the TCP:Eu2+ was found to be 60% and 82% of that of the commercial BaMgAl10O17:Eu2+ (BAM) under excitation at 340 nm and 370 nm, respectively. Upon excitation at 370 nm, the absolute internal and external quantum efficiencies of the Ca3(PO4)2:1.5%Eu2+ are 60% and 42%, respectively. Moreover, a white LED lamp was fabricated by coating TCP:Eu2+ with a blue-emitting BAM and a red-emitting CaAlSiN3:Eu2+ on a near-ultraviolet (375 nm) LED chip, driven by a 350 mA forward bias current, and it produces an intense white light with a color rendering index of 75.  相似文献   

8.
Na3Gd(PO4)2, Na3Gd0.94(PO4)2:0.06Tb3+ and Na3Gd0.94(PO4)2:0.06Eu3+ are prepared by solid-state reaction and their photoluminescence (PL) properties are investigated in the ultraviolet (UV) and vacuum ultraviolet (VUV) region. The obtained results show that Na3Gd0.94(PO4)2:0.06Tb3+ has an efficient emission under 147 nm excitation, but the emission efficiency of Na3Gd0.94(PO4)2:0.06Eu3+ is low under 147 nm excitation. We discuss the energy absorption and transfer process in the VUV region to solve the special phenomenon.  相似文献   

9.
The Sr2Al2SiO7:Eu2+, Ce3+ phosphors were synthesized by a high temperature solid-state reaction. Effective energy transfer occurs in Ce3+ and Eu2+ co-doped Sr2Al2SiO7 due to large spectral overlap between the emission of Ce3+ and excitation of Eu2+ ions. Co-doping of Ce3+ enhances the emission intensity of Eu2+ greatly by transferring its excitation energy to Eu2+ ions. The critical distance has been estimated to be about 1.83 nm by spectral overlap method. Furthermore, the developed phosphors can generate lights from blue to green region under the excitation of UV radiation by appropriately tuning the activator content. The Sr2Al2SiO7:Eu2+,Ce3+ phosphors are promising phosphors for warm-white-light-emitting diode because of its effective excitation in the near ultraviolet range.  相似文献   

10.
K2Gd1?xZr(PO4)3:Eux3+ (0.02  x  0.1, x is in mol.%) were prepared by solid-state reaction method and their photoluminescence properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The phenomenon of visible quantum cutting through downconversion was observed for the Gd3+–Eu3+ couple in this Eu3+-doped K2GdZr(PO4)3 system. Visible quantum cutting, the emission of two visible light photons per absorbed VUV photon, occurred upon the 186 nm excitation of Gd3+ at the 6GJ level via two-step energy transfer from Gd3+ to Eu3+ by cross-relaxation and sequential transfer of the remaining excitation energy. The results revealed that the efficiency of the energy transfer process from Gd3+ to Eu3+ in the Eu3+-doped K2GdZr(PO4)3 system could reach to 155% and K2GdZr(PO4)3:Eu3+ was effective quantum cutting material.  相似文献   

11.
Eu3+, Er3+ and Yb3+ co-doped BaGd2(MoO4)4 two-color emission phosphor was synthesized by the high temperature solid-state method. The structure of the sample was characterized by XRD, and its luminescence properties were investigated in detail. Under the excitation of 395 nm ultraviolet light, the BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ phosphor emitted an intense red light at 595 and 614 nm, which can be attributed to 5D0  7F1 and 5D0  7F2 transitions of Eu3+, respectively. The phosphor will also show bright green light under 980 nm infrared light excitation. The green emission peaks centred at 529 and 552 nm, were attributed to 4H11/2  4I15/2 and 4S3/2  4I15/2 transitions of Er3+, respectively. It indicated that the two-color emission can be achieved from the same BaGd2(MoO4)4:Eu3+,Er3+,Yb3+ host system based on the different pumping source, 395 nm UV light and 980 nm infrared light, respectively. The obtained results showed that this kind of phosphor may be potential in the field of multi-color fluorescence imaging and anti-counterfeiting.  相似文献   

12.
《Optical Materials》2014,36(12):2309-2313
We report single-phased color-tunable phosphors (Sr2CeO4: Eu3+, Dy3+) synthesized by a polymer-network gel method for UV–LED. The photoluminescence properties and possible energy transfer mechanisms of Eu3+ and Dy3+ in Sr2CeO4 were investigated by experiments and first principles calculations. The results show that the 5D0  7F2 emission of Eu3+ is enhanced by the increase in the amount of Eu3+ ions and Eu3+ substitution makes more stable defect than Dy3+ substitution does. The photoluminescence mechanism of Sr1.994−xEuxDy0.006CeO4 can be explained by the energy transfer model with the consideration of the defect conditions in the crystals.  相似文献   

13.
A novel green emitting phosphor, Eu2+-activated Ca6Sr4(Si2O7)3Cl2, was synthesized using the solid-state reaction and its temperature-dependent luminescence characteristic was reported for the first time. Crystallographic site-occupations of Eu2+ ions in this host were assigned and two distinguishable Sr2+ sites were confirmed. As the temperature increases, the emission lines of Ca6Sr3.99(Si2O7)3Cl2:0.01Eu2+ show an anomalous blue-shift along with the broadening bandwidth and decreasing emission intensity, which is ascribed in terms of the phonon-assisted back tunneling from the excited state of low-energy emission band to the high-energy emission band in the configuration coordinate diagram. Further, the luminescence quenching temperature, the activation energy for thermal quenching (ΔE), and the chromaticity coordinates were also investigated. In view of its preferable excitation spectrum profile, intense green emission peaking at 511 nm, and high thermal luminescence stability, the as-prepared phosphor is expected to find applications as a new green emitting phosphor for near-UV light emitting diodes.  相似文献   

14.
《Materials Research Bulletin》2013,48(11):4743-4748
We investigate the persistent luminescence in europium-doped strontium pyrophosphate upon codoping with auxiliary rare earth ions. The persistent phosphors are synthesized via solid-state reaction method under flowing N2 + H2. Under UV irradiation, broadband emission persistent luminescence located at 420 nm is observed in all of these phosphors at room temperature. The effects of auxiliary rare earth ions on Sr2P2O7:Eu2+ are discussed according to the decay curves and thermoluminescence spectra. Sr2P2O7:Eu2+,Lu3+ shows the best performance, while and La3+ and Ce3+ codoped samples are the weakest. The influence of auxiliary codopants is discussed in terms of ionic potential and ionic radius. We derive an empirical formula based on the experimental results.  相似文献   

15.
The electronic structure of CaZr4(PO4)6 was calculated using the CASTEP code and the band gap for CaZr4(PO4)6 can reach up to 4.30 eV. Ca1−xEuxZr4(PO4)6 (0.01  x  1) samples were prepared by a high temperature solid-state reaction method. XRD analysis shows that Eu2+ ion can be totally incorporated into CaZr4(PO4)6 forming complete solid solutions with trigonal lattice. Ca1−xEuxZr4(PO4)6 (0.01  x  1) shows typical broad band emission in wavelength range from 400 to 650 nm for both under ultraviolet (UV) light and X-ray excitation, originating from the 4f65d1  4f75d0 transition of Eu2+ ions. With increasing Eu2+ concentration, there is abnormal blue-shift of the emission peaks for Ca1−xEuxZr4(PO4)6 due to the decreasing crystal field strength and Stokes shift. With increasing temperature in CaZr4(PO4)6: Eu2+, its emission bands show the anomalous blue-shift with decreasing intensity. The overall scintillation efficiency of Ca0.9Eu0.1Zr4(PO4)6 is 1.7 times of that of Bi4Ge3O12 (BGO) powder under the same conditions. In addition, its predominant decay time is about 50 ns at room temperature. The potential application of Eu2+-doped CaZr4(PO4)6 has been pointed out.  相似文献   

16.
In this paper, a series of Ca3 -x-ySry(PO4)2:xEu2 +, (0  x  0.075, 0  y  2.2) phosphors were prepared by flux assisted solid-state reaction method, and their photoluminescence properties were investigated. The β- to β′-phase transition of Ca3 -ySry(PO4)2 for high Sr2 + content was observed from the XRD patterns, and the corresponding optical bandgaps were obtained experimentally. Various Eu2 + emission centers were found, which generate tunable emission depending on the Sr2 + concentration. Broad and intense excitation bands exist in Eu2 + activated Ca3(PO4)2, and the introduction of Sr2 + further extends and enhances the excitation bands beyond 350 nm, which is beneficial to the applications on near ultraviolet LEDs. The morphology measurement reveals that the average size of particles with smooth surface is about 11.2 μm, which is suitable for the practical applications. These results indicate that the Ca3 -x-ySry(PO4)2:xEu2 + phosphors could be promising candidates for LEDs.  相似文献   

17.
《Materials Research Bulletin》2006,41(10):1854-1860
The luminescent properties of Sr3Al2O6 doped and co-doped with the rare earths (Ln3+ = Eu3+, Dy3+, Eu3+ and Dy3+) have been studied. The material was synthesized by reflux method and fired up to 900 °C for 16 h. The X-ray diffraction pattern confirms that the synthesized material consists of Sr3Al2O6 as main phase. The photoluminescence study gives a clear evidence of europium stabilizing in trivalent form and surprisingly with no presence of europium in the divalent state. The addition of Dy3+ as co-dopant in the Sr3Al2O6:Eu3+ matrix shows the quenching effect in the photoluminescence (PL) spectra. The photoluminescence intensity of Eu3+ falls gradually on increasing the concentration of the co-dopant in the range from 0.1 mole% to 2.0 mole%. The significantly intense thermoluminescence (TL) glow peak was obtained for Sr3Al2O6:Eu3+, Dy3+ (1% and 0.1%) at around 194 °C when irradiated with 10 kGy dose from Sr-90 β source.  相似文献   

18.
Red-emitting phosphors LaBSiO5:Eu3+ and LaBSiO5:Eu3+, Al3+ were synthesized by the conventional solid state method at 1100 °C. The structure and luminescent properties of these phosphors are investigated. LaBSiO5:Eu3+ and LaBSiO5:Eu3+, Al3+ could be efficiently excited by near ultraviolet light with the strongest excitation peak at 395 nm. The main emission peak is located at around 616 nm, which corresponds to the transition of 5D0  7F2 of Eu3+ ions. The emission intensity of LaBSiO5:Eu3+ was enhanced by introducing Al3+ ions. Compared with Y2O2S:0.05Eu3+, the sample La0.70B0.75SiO5:0.30Eu3+, 0.25Al3+ shares the intense red emission, and its emission intensity is about 3.8 times as strong as that of Y2O2S:0.05Eu3+ under 395 nm light excitation. Bright red light can be observed from the red LED based on La0.70B0.75SiO5:0.30Eu3+, 0.25Al3+, hence La0.70B0.75SiO5:0.30Eu3+, 0.25Al3+ maybe find application on near-UV InGaN-based white LEDs.  相似文献   

19.
《Materials Letters》2006,60(21-22):2645-2649
The single phases of Y0.95  xMxBO3:5%Eu3+ (M = Ca, Sr, Ba, Zn, Al, 0  x  0.1) were synthesized successfully by solid-state reaction. Their luminescent properties were studied under UV and VUV excitation. The results indicated that with the incorporation of Ca2+, Sr2+, Ba2+, Zn2+ or Al3+ into the host lattice of YBO3:Eu3+, the high symmetry around Eu3+ was destroyed and the ratio of red emission(5D07F2) to orange one (5D07F1) increased, leading to a better chromaticity. Furthermore, the co-doping ions such as Ca2+, Zn2+ and Al3+ were beneficial to enhance the luminescent intensity of Eu3+. These phenomena were evaluated, and possible explanations were proposed.  相似文献   

20.
In the present study, we report the formation of transparent glass-ceramics containing BaGdF5 nanocrystals under optimum ceramization of SiO2–BaF2–K2O–Sb2O3–GdF3–Eu2O3 based oxyfluoride glass and the energy transfer mechanisms in Eu2+  Eu3+ and Gd3+  Eu3+ has been interpreted through luminescence study. The modification of local environment surrounding dopant ion in glass and glass ceramics has been studied using Eu3+ ion as spectral probe. The optimum ceramization temperature was determined from the differential scanning calorimetry (DSC) thermogram which revealed that the glass transition temperature (Tg), the crystallization onset temperature (Tx), and crystallization peak temperature (Tp) are 563 °C, 607 °C and 641 °C, respectively. X-ray diffraction pattern of the glass-ceramics sample displayed the presence of cubic BaGdF5 phase (JCPDS code: 24-0098). Transmission electron microscopy image of the glass-ceramics samples revealed homogeneous distribution of spherical fluoride nanocrystals ranging 5–15 nm in size. The emission transitions from the higher excited sates (5DJ, J = 1, 2, and 3) as well as lowered asymmetry ratio of the 5D0  7F2 transition (forced electric dipole transition) to that of the 5D0  7F1 transition (magnetic dipole) of Eu3+ in the glass-ceramics when compared to glass sample demonstrated the incorporation of dopant Eu3+ ions into the cubic BaGdF5 nanocrystals with higher local symmetry with enhanced ionic nature. The presence of absorption bands of Eu2+ ions and Gd3+ ions present in the glass matrix or fluoride nanocrystals in the excitation spectra of Eu3+ by monitoring emission at 614 nm indicated energy transfer from (Eu2+  Eu3+) and (Gd3+  Eu3+) in both glass and glass-ceramics samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号