首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
构建高精度的变形预测模型对于大坝风险评估及防治措施制定具有极其重要的意义。传统的大坝变形预测模型鲜有针对大坝的变形滞后性特点以及变形特征因子的影响性分析与评估,这会对模型的预测精度造成较大的影响,并导致模型缺乏可解释性。针对上述问题,本文提出一种结合时间注意力机制的门控循环单元神经网络(GRU)架构。首先通过卡尔曼滤波(Kalman Filter)对原始大坝变形数据中由于监测器异常导致的随机噪声与异常值进行处理。其次,利用随机森林(RF)对各变形特征因子的重要性进行分析和评估,筛选模型输入的特征因子。最后,针对大坝变形的滞后性,利用时间注意力机制进一步提高GRU模型对时间维度上的动态特征关注度,增强模型对时间维度信息的自适应学习能力,且对时间注意力进行可视化进一步提高了大坝变形预测模型在隐藏状态阶段上的可解释性。通过工程实例研究结果表明,卡尔曼滤波在大坝变形监测中确实存在一定适用性,同时本文所提出的耦合时间注意力机制的变形预测模型有着较高的预测精度,对于预测过程中的隐藏状态层级有较强的解释性,并揭示了温度与水位因素对大坝变形的长期影响,为大坝变形安全监测提供了一种新的有效方法。  相似文献   

2.
大坝变形性态是多种因素长期共同作用的结果,其演变模式包括时间和空间两个维度。然而,当前大坝变形智能建模较少综合考虑时空二维特征,原型观测资料中蕴含的大量时空信息亟待进一步挖掘。针对该问题,本文从单测点时序相关性和多测点空间关联性出发,提出构建一种耦合时空两个维度相关特性的大坝变形动态监控模型。该模型将门控循环单元(gated recurrent unit,GRU)神经网络作为核心层,建模学习历史变形数据内在时变规律,通过迭代提取有效变形因子来构造空间维度特征,并引入软注意力机制改进GRU隐藏状态的概率权重分配规则,实现对关键信息的自适应学习。以丰满混凝土重力坝多测点变形监测数据为例,验证了该模型的有效性。结果表明,所提出的监控模型能准确模拟大坝变形动态演变过程,且与常规监控模型相比,其外推预测精度更高,为大坝安全监控提供了新的方法和手段。  相似文献   

3.
建立准确可靠的变形预测模型对保证大坝安全运行至关重要,然而现有监控模型难以兼顾海量监测数据的多维度时空关联特性,不能有效反映大坝整体和区域性变形性态。为此,引入考虑测点综合距离的层次凝聚聚类和投影寻踪法,深入挖掘坝体位移场海量监测数据中的关联信息,得到反映分区多测点变形特征的融合变形序列;提出一种由北方苍鹰算法优化的高斯过程回归,以此建立分区多测点融合变形预测模型,并依据拉依达准则构建预测结果的置信区间。结合工程实例,探究了不同核函数对模型预测精度的影响;通过对比分析,验证了本文方法对比几种常规模型具有更高预测精度和适用性,且能对预测结果的可靠程度进行估计,对大坝变形性态的安全监测具有一定工程应用价值。  相似文献   

4.
混凝土面板堆石坝变形测值具有高度的非线性和复杂性,变形影响因素众多且因素间存在多重共线性。针对此类坝型的变形预测分析问题,本文提出一种基于因子融合的混凝土面板堆石坝变形预测模型。首先,利用变分模态分解对变形时间序列进行分解,有效降低变形时间序列的复杂程度,提升特征提取效果。随后,借助偏最小二乘回归对变形影响因子进行降维融合,降低自变量间多重共线性对构建模型的影响,提高模型可解释性。最后,通过一维卷积网络融合门控循环单元神经网络对子序列进行重构预测。根据实际工程分析结果,本模型可以在效率和精度上有效提升混凝土面板堆石坝变形预测效果,对类似坝型的变形监测分析具有一定的参考意义。  相似文献   

5.
在大坝工程变形分析和预测方面,研究了一种基于支持向量度的模糊最小二乘支持向量机(LS-SVM)算法,结合具体实例进行对比分析,结果表明模糊LS-SVM模型的预测精度要高于LS-SVM模型,且支持向量机(SVM)的稀疏性也优于LS-SVM模型,可以很好地应用于大坝变形监测分析。  相似文献   

6.
7.
拱坝变形性态是多因子耦合共同作用的结果,具有时空二维的演化规律和分布特征。本文基于变截距面板数据时空模型,充分利用多测点变形资料,研究了锦屏一级大坝变形性态的变化规律,解决了常规统计模型仅从时序上考察单点变形性态的不足。结果表明:模型可准确感知反馈坝体变形响应的时空特征,良好的拟合精度与外延性确保了建模的正确性。此外,模型具有控制异质性的特点,可精准评价各分量对坝体特征区域的影响,弥补了常规模型的不足;模型还具备降低多重因子共线性、抗差性等优良性质,为大坝安全在线监控提供了理论依据和技术支持。  相似文献   

8.
9.
研究了基于遗传规划(GP)理论的大坝变形监测数学模型的建模方法。通过与回归分析模型和BP神经网络模型的拟合精度及预测效果的比较,证明GP模型有更高的拟合精度和更好的预测效果,为大坝变形监测数据处理开辟了一条新的途径。  相似文献   

10.
针对目前部分单测点模型未考虑大坝监测数据空间关联性、难以描述大坝变形整体响应特性的问题,以及传统回归模型未考虑环境量与变形量的非线性关系导致预测精度较低的问题,本文提出了一种预测模型,包括对监测数据进行基于自适应噪声完备集合经验模态分解-小波包降噪,结合弹性网络对考虑了空间关联性的变形效应量因子进行特征选取,辅以交叉验证特征因子的有效性,并使用麻雀搜索算法提高计算效率。基于锦屏一级拱坝实测变形数据,探究了考虑空间关联性的最优因子集,并通过对比多种模型的MSE、RMSE等参数验证了本文方法的有效性,在大坝变形性态分析中具有一定应用价值。  相似文献   

11.
变形预测对混凝土坝的安全运行和风险管控意义重大,针对现有方法难以实现长期精准预测并且建模困难等问题,采用多元回归(MR)模型将变形序列分解为水压、温度、时效和余项分量,引入季节差分自回归移动平均(SARIMA)模型对余项中的非稳定不规则信号进行信息挖掘,以此建立混凝土坝变形的长期预测模型.实例分析表明,该模型相对简单易...  相似文献   

12.
当前堆石坝变形智能预测模型较少关注多测点变形时间序列在时空特征上的不均衡性,因此限制了变形预测精度的进一步提高。为了解决该问题,本文提出了一种结合卷积神经网络、注意力机制和长短期记忆神经网络的堆石坝变形预测模型(CTSA-Conv LSTM),该模型可以提取变形时空特征,对不同时刻和不同位置的测点赋予不同的权重系数,实现对堆石坝整体变形规律的自适应学习。以水布垭面板堆石坝为例,采用该模型和最大断面所有测点的变形监测数据,验证了模型的有效性。模型预测效果优于Holt-Winters等常规时序预测模型,预测精度也优于笔者提出的基于LSTM的变形预测模型。通过深度学习提取监测数据时空特征,进一步提高了大坝变形预测精度,为大坝安全监控模型提供了新的思路。  相似文献   

13.
传统大坝预测方法难以适应坝体变形序列的高维非线性特征,且仅能以点值的形式预测大坝变形,未能有效量化由数据随机噪声、输入样本的主观确定、参数的随机选择等引起的结果不确定性。针对上述问题,提出了基于Bootstrap和改进布谷鸟优化多核极限学习机(ICS-MKELM)算法的大坝变形预测模型,实现在精确预测大坝变形点值的同时,通过区间形式量化预测值的不确定性。首先,建立基于高精度多核极限学习机(MKELM)的大坝变形预测模型,该模型集成了核极限学习机(KELM)高效处理强非线性回归问题的优势和混合核泛化、学习能力强的特点,同时采用基于惯性权重和混沌理论改进的布谷鸟搜索(ICS)算法对多核极限学习机中核参数及正则系数进行优化,弥补模型易陷入局部最优的不足;其次,引入Bootstrap区间预测方法对模型和数据造成的不确定影响进行量化;最后,将所提模型应用于某实际大坝工程的变形预测,分析了不同训练样本数对模型预测精度的影响,同时通过与五种常用的预测算法进行对比,验证了本文模型具有一致性和优越性。  相似文献   

14.
风能的波动性对风电产业的迅速发展带来了巨大挑战,准确可靠的短期风电功率预测对满足电网调度以及降低度电成本具有重要意义。文中提出了一种基于K-means++聚类分析和极限学习机(ELM)的短期风电功率预测方法,同时使用数值天气预报(NWP)数据与SCADA系统的历史监测数据,实现了对未来72小时的短期风电功率预测。首先,通过K-means++聚类算法将NWP数据划分为数量不等的簇,之后,使用ELM对每个簇的数据分别建立NWP数据与SCADA功率数据间的映射模型。完成模型训练后,根据数据与各聚类中心点之间的距离选择最佳预测模型。实验结果表明,与常用的经典模型相比,其预测结果精度更高,具有更高的预测性能。  相似文献   

15.
讨论了全球定位系统(GPS)变形监测网的建立以及提高GPS观测精度应采取的措施。分析了GPS大坝变形监测网的特殊性,提出了选择站心地平坐标系作为GPS大坝变形监测网平差计算的参考坐标系;采用拟稳平差方法处理GPS大坝变形监测网的观测数据。编写了GPS大坝变形监测网的网平差软件,并对某大坝GPS变形监测网的3期观测数据进行了平差计算。计算结果表明,GPS观测的精度可以满足大坝变形监测的精度要求;拟稳平差方法更适合于GPS变形监测网的数据处理。  相似文献   

16.
将混沌时间序列预测理论应用到大坝变形预测中,根据非线性大坝变形时间序列,运用相空间重构理论,建立了加权一阶局域法、基于最大Lyapunov指数法大坝预测模型,对混沌的大坝变形数据短期预测模型进行了研究,对比分析了各自的特点,并结合实例完成了对大坝变形的预测。计算分析表明,该模型预测误差较小,与传统的自回归模型预测结果相比,基于混沌时间序列的预测方法在大坝变形的短期预测中具有更高的精度。  相似文献   

17.
研究了将模糊规则推理和粗糙集理论相结合建立大坝安全监测变形预测模型的新方法。该 方法采用粗糙集理论对原始监测样本数据进行离散,根据离散结果确定模糊推理规则,并通过对规 则的模糊推理建立大坝安全监测变形预测模型。实例分析表明,该模型在大坝变形影响因素重要 性评价和非确定性测值预测方面取得了满意的结果。  相似文献   

18.
为提高电力负荷预测精度,需考虑区域内不同地区多维气象信息对电力负荷影响的差异性。在空间维度上,提出多维气象信息时空融合的方法,利用Copula理论将多座气象站的风速、降雨量、温度、日照强度等气象信息与电力负荷进行非线性耦合分析并实现时空融合。在时间维度上,采用海洋捕食者算法(MPA)实现变分模态分解(VMD)核心参数的自动寻优,并采用加权排列熵构造MPA-VMD适应度函数,实现负荷序列的自适应分解。通过将时间维度各分量与空间维度各气象信息进行融合构造长短期记忆(LSTM)网络模型与海洋捕食者算法-最小二乘支持向量机(MPA-LSSVM)模型的输入集,得到各分量预测结果,根据评价指标选择各分量对应的预测模型,重构得到整体预测结果。算例分析结果表明,所提预测模型优于传统预测模型,有效提高了电力负荷预测精度。  相似文献   

19.
混合模型常被用于大坝变形的整体预测,目前开展的研究主要针对混凝土坝,对于同样数量多且分布广的浆砌石这类非线性材料坝的研究还较少。本文考虑非线性材料坝变形具有的时变特性,通过引入时间量参数及观测点相对坐标,建立对应的水压分量多点统计模型。考虑到引入多参数的水压分量模型系数寻优困难问题,采用改良的粒子群算法(IPSO)加强粒子随机性及交互性,提高模型系数的寻优速度。采用有限元方法(FEM)与卡尔曼滤波(KF)对其进行预测,建立FEMK模型。同时,采用深度学习算法LSTM训练经PCA降维后的温度和时效因子并预测相应变形值。联合构建的FEMK-LSTM-PCA时空混合模型经工程实例验证有较高预测精度,并且可以实现对大坝变形的整体预测。  相似文献   

20.
本文针对遗传算法局部搜索能力差的缺陷,把单纯形法嵌入到遗传算法中构成复合遗传算法,建立了基于遗传单纯形神经网络的大坝变形监控模型。实例研究表明,该模型较遗传神经网络模型、BP模型收敛性能好,具有较高的预报精度、较快的训练速度和较强的泛化能力,用于大坝变形预测有效可行,具有良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号