首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
K2Gd1?xZr(PO4)3:Eux3+ (0.02  x  0.1, x is in mol.%) were prepared by solid-state reaction method and their photoluminescence properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The phenomenon of visible quantum cutting through downconversion was observed for the Gd3+–Eu3+ couple in this Eu3+-doped K2GdZr(PO4)3 system. Visible quantum cutting, the emission of two visible light photons per absorbed VUV photon, occurred upon the 186 nm excitation of Gd3+ at the 6GJ level via two-step energy transfer from Gd3+ to Eu3+ by cross-relaxation and sequential transfer of the remaining excitation energy. The results revealed that the efficiency of the energy transfer process from Gd3+ to Eu3+ in the Eu3+-doped K2GdZr(PO4)3 system could reach to 155% and K2GdZr(PO4)3:Eu3+ was effective quantum cutting material.  相似文献   

2.
《Optical Materials》2014,36(12):2128-2131
Green-emitting (Gd1−xyLaxTby)2O(WO4)2 (0  x  0.05, 0.05  y  0.15) phosphors were synthesized in a single phase form by the conventional solid-state reaction method, and their photoluminescent properties were characterized. The (Gd1−xyLaxTby)2O(WO4)2 phosphors showed strong and broad excitation bands from 230 to 350 nm, corresponding to the energy transition from the 4f8 to 4f75d configuration of Tb3+ and the charge-transfer (CT) transition of O2−−W6+. The oxytungstate phosphors exhibited typical emission peaks assigned to the transition from 5D4 to 7FJ (J = 6, 5, 4, and 3) of Tb3+, and the luminescence emission intensity was effectively enhanced by the La3+ doping into the host Gd2O(WO4)2 lattice. The highest green emission intensity was obtained for (Gd0.87La0.03Tb0.10)2O(WO4)2, where the relative emission intensity was 63% that of a commercial green-emitting (La0.52Ce0.31Tb0.17)PO4 phosphor.  相似文献   

3.
In this paper, a cyan-emitting phosphor Ca3(PO4)2:Eu2+ (TCP:Eu2+) was synthesized and evaluated as a candidate for white light emitting diodes (WLEDs). This phosphor shows strong and broad absorption in 250–450 nm region, but the emission spectrum is prominent at around 480 nm. The emission intensity of the TCP:Eu2+ was found to be 60% and 82% of that of the commercial BaMgAl10O17:Eu2+ (BAM) under excitation at 340 nm and 370 nm, respectively. Upon excitation at 370 nm, the absolute internal and external quantum efficiencies of the Ca3(PO4)2:1.5%Eu2+ are 60% and 42%, respectively. Moreover, a white LED lamp was fabricated by coating TCP:Eu2+ with a blue-emitting BAM and a red-emitting CaAlSiN3:Eu2+ on a near-ultraviolet (375 nm) LED chip, driven by a 350 mA forward bias current, and it produces an intense white light with a color rendering index of 75.  相似文献   

4.
《Materials Letters》2007,61(8-9):1885-1888
In this paper, we reported a series of halosilicate photoluminescence (PL) materials, which have the chemical composition Ba5SiO4(FxCl6−x):0.05Eu2+ (x = 0, 1, 3, 4, 6). It is found that, under 365-nm UV light, Ba5SiO4Cl6:Eu2+ phosphor exhibits strong blue light with peak wavelength at 442 nm. By adding small amount of F to the host lattice for the substitution of Cl, the emission wavelength of the Ba5SiO4(F, Cl)6:Eu2+ phosphor changes to 503 nm, corresponding to the green light. The possible luminescence mechanism in this phosphor system was also discussed.  相似文献   

5.
A series of luminescent emission-tunable phosphors Ca8NaGd(PO4)6F2: Eu2+, Mn2+ have been prepared by a combustion-assisted synthesis method. The X-ray diffraction measurement results indicate that the crystal structure of the phosphor is a single phase of Ca8NaGd(PO4)6F2. The photoluminescence (PL) properties of Eu2+ and Mn2+-codoped Ca8NaGd(PO4)6F2 phosphors were also investigated. The phosphors can be efficiently excited by ultraviolet (UV) light and show a blue emission band at about 450 nm and a yellow emission band at about 574 nm, which originated from the Eu2+ ions and the Mn2+ ions, respectively. The efficient energy transfer from the Eu2+ ions to the Mn2+ ions was observed and its mechanism should be a resonant type via a nonradiative dipole–quadrupole interaction. A color-tunable emission in Ca8NaGd(PO4)6F2 phosphors can be realized by Eu2+  Mn2+ energy transfer. Our results indicate that the developed phosphor may be used as a potential white emitting phosphor for UV based white LEDs.  相似文献   

6.
《Materials Letters》2007,61(19-20):4062-4065
Homogeneous coatings were attained by electrochemical method in electrolytes containing Ca2+ and PO43− ions with Ca/P ratio being 1.67. SEM observation showed that the hydroxyapatite (HAp,Ca10(PO4)6(OH)2) crystals prepared with higher concentration electrolyte (4 × 10 2 M Ca2+) are ribbon-like with thickness of nanometer size, a morphology seldom reported previously. In an electrolyte of lower concentration (6 × 10 4 M Ca2+), the HAp crystals formed are rod-like with a hexagonal cross section and diameter of about 70–80 nm. XRD patterns and IR spectra confirmed that the coatings consist of HAp crystals. TEM micrographs and SAD indicated that the longitude direction for both ribbon-like and rod-like crystal is [002], and the flat surface of the ribbon is (110). HRTEM showed that the ribbon-like crystal is a mixture of HAp and octacalcium phosphate (OCP, Ca8H2(PO4)6.5H2O).  相似文献   

7.
A green-emitting phosphor of Eu2+-activated Sr5(PO4)2(SiO4) was synthesized by the conventional solid-state reaction. It was characterized by photoluminescence excitation and emission spectra, and lifetimes. In Sr5(PO4)2(SiO4):Eu2+, there are at least two distinguishable Eu2+ sites, which result in one broad emission situating at about 495 nm and 560 nm. The phosphor can be efficiently excited in the wavelength range of 250–440 nm where the near UV (~ 395 nm) Ga(In)N LED is well matched. The dependence of luminescence intensities on temperature was investigated. With the increasing of temperature, the luminescence of the phosphor shows good thermal stability and stable color chromaticity. The luminescence characteristics indicate that this phosphor has a potential application as a white light emitting diode phosphor.  相似文献   

8.
In this paper, a series of Ca3 -x-ySry(PO4)2:xEu2 +, (0  x  0.075, 0  y  2.2) phosphors were prepared by flux assisted solid-state reaction method, and their photoluminescence properties were investigated. The β- to β′-phase transition of Ca3 -ySry(PO4)2 for high Sr2 + content was observed from the XRD patterns, and the corresponding optical bandgaps were obtained experimentally. Various Eu2 + emission centers were found, which generate tunable emission depending on the Sr2 + concentration. Broad and intense excitation bands exist in Eu2 + activated Ca3(PO4)2, and the introduction of Sr2 + further extends and enhances the excitation bands beyond 350 nm, which is beneficial to the applications on near ultraviolet LEDs. The morphology measurement reveals that the average size of particles with smooth surface is about 11.2 μm, which is suitable for the practical applications. These results indicate that the Ca3 -x-ySry(PO4)2:xEu2 + phosphors could be promising candidates for LEDs.  相似文献   

9.
Present study deals with Eu3+ activated novel alkaline earth metal (Sr and Ca) gallium oxide phosphors, Sr(2.92?x)Ca(x)Ga2O6:Eu3+0.08 (x = 0 to 2.92). Crystal structure, morphology and luminescence (excitation, emission and CIE coordinate) properties of these phosphors have been studied as a function of Ca concentration. Doping of Ca ions into Sr2.92Ga2O6:Eu3+ phosphor gives rise to a significant enhancement in overall fluorescence and the optimum emission is attained for pure Ca2.92Ga2O6:Eu3+ phosphor for x = 2.92. The intensity ratio of 5D0  7F2 to 5D0  7F1 transitions (monochromaticity) of Eu3+ for different doping concentration of Ca suggests that asymmetry around the Eu3+ ion increases with increase in Ca ion concentration, which is responsible for enhanced emission. The excellent optical features, such as broad excitation band (230–480 nm) and excellent emission in red region (at 614 nm), conclude that calcium gallet phosphor could be a potential candidate for light emitting diodes and display applications.  相似文献   

10.
Random Laser emission at 1.06 μm, self-second-harmonic generation at 0.53 μm and self-sum-frequency generation at 0.46 μm were investigated in NdxY1.00−xAl3(BO3)4 nanocrystalline powders, for 0.05  x  1.00, excited by a pulsed laser operating at 808 nm, focusing on the interplay between the RL performance and the second-order nonlinear processes. The RL performance, characterized by a figure-of-merit relating the laser slope efficiency and the excitation pulse energy threshold, improved as x increased up to 1.00 while the efficiency of the self-frequency conversion processes reduced for increasing x because of distortions introduced in the crystalline structure of the grains. The RL wavelength was also dependent on the Nd3+ concentration and presented a redshift from 1061.9 nm to 1063.5 nm for increasing values of x.  相似文献   

11.
《Optical Materials》2014,36(12):2183-2187
This paper reports the microstructure, luminescence and thermal stability properties of the NaSr1−xPO4:xTb3+ powders (x = 0.008, 0.01, 0.02, 0.04 and 0.06) via the conventional solid-state sintering at 1200 °C for 5 h. The X-ray diffraction result verifies all diffraction peaks are pure phase of NaSrPO4. The luminescence results show that the NaSrPO4:xTb3+ powders mainly excited at 370 nm have a series of the emission-states, related to the typical 4f  4f intra-configuration forbidden transitions of Tb3+, and a major emission peak of around 546 nm. The concentration quenching of the NaSr1−xPO4:xTb3+ phosphors is appeared at x = 0.02. The decay time values of the NaSr1−xPO4:xTb3+ phosphors for the 5D4 state of the Tb3+ are around 3.30 ms to 3.60 ms. It is also found the chromaticity coordinate of NaSrPO4:Tb3+ phosphor varies with the increase of the concentration of Tb3+ ions from blue to green. Moreover, the thermal stability of the NaSrPO4:xTb3+ phosphors is slightly better than that of conventional YAG phosphors.  相似文献   

12.
Eu3+ ions incorporated Li–K–Zn fluorotellurite glasses, (70  x)TeO2 + 10Li2O + 10K2O + 10ZnF2 + xEu2O3, (0  x  2 mol%) were prepared via melt quenching technique. Optical absorption from 7F0 and 7F1 levels of the Eu3+-doped glass has been studied to examine the covalent bonding characteristics, energy band gap and Judd–Ofelt intensity parameters. The emission spectra (5D0  7F0,1,2,3,4) of the glasses were used to estimate the luminescence enhancement, asymmetric environment in the vicinity of Eu3+ ions, stimulated emission cross section and branching ratios. The phonon side band mechanism of 5D2 level of the Eu3+ ions in the prepared glass was examined by considering the excitation and Raman spectra. The radiative lifetime calculated using Judd–Ofelt parameters was compared with the experimental lifetime to estimate the quantum efficiency of 5D0 level of Eu3+ ions in Li–K–Zn fluorotellurite glass.  相似文献   

13.
Double-emitting blue phosphor Sr3(PO4)2: Eu2+, Dy3+ was synthesized by solid state reaction under H2 atmosphere. XRD exhibited the pure hexagonal phase of the prepared phosphor. The photoluminescence results showed that all samples had intense broad absorption band between 250 and 450 nm, which matched well with the near-UV (350–420 nm) emission band of InGaN-based chips. The emission spectrum of Sr3(PO4)2: Eu2+, Dy3+ consisted of two broad bands, peaked at 485 nm and 410 nm, which originated from two luminescent centers, related to 4f65d1  4f7 transition of Eu2+ in six-coordinated Sr(I) and ten-coordinated Sr(II) sites respectively. The intensity ratio of two emission bands could be easily tuned by adjusting Dy3+ co-doping content, which resulted in color-tunable luminescence in bluish green region to purplish blue region.  相似文献   

14.
Transparent and uniform LiLa(1?x)Eux(WO4)2 single-crystalline fibers where x = 0.005, 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2, 0.25 and 1.0, with an average of 20–40 mm length were obtained by the micro-pulling-down method aiming structural and optical characterization. The optimum pulling rate was found to depend on the difference between alkali and rare earth ionic radii. Rietveld analysis from X-ray diffraction data and excitation spectroscopy at room temperature were applied to investigate the lattice changes due to the Eu3+ incorporation in the host. LiLa(1?x)Eux(WO4)2 crystal fibers present red emission due to the electric dipole 5D0  7F2 transition under 395 nm excitation showing a concentration quenching around 20 mol% of doping. The excitation spectra of the 7F0  5D0 transition show small changes in the Eu3+ surroundings as function of dopant concentration.  相似文献   

15.
RbCaGd(PO4)2 doped with Ce3+, Mn2+ was synthesized by the sol-gel method. The crystal structure and crystallographic location of Ce3+ in RbCaGd(PO4)2 were identified by Rietveld refinement. Powder X-ray diffraction (XRD) revealed that the structure of RbCaGd(PO4)2:Ce3+ compounds is hexagonal structure which is similar to that of hexagonal LnPO4 with the lattice constant of a = b = 7.005(57) Å, c = 6.352(05) Å, and V (cell volume) = 269.980 Å3. The photoluminescence behavior and emission mechanism were studied systematically by doping activators in the RbCaGd(PO4)2 host. The Mn2+ incorporated RbCaGd(PO4)2:Ce3+, Mn2+ compounds exhibited blue emission from the parity- and spin-allowed f-d transition of Ce3+ and orange-to-red emission from the forbidden 4T1  6A1 transition of Mn2+. The emission chromaticity coordinates of RbCaGd(PO4)2:0.10Ce3+, xMn2+ (x = 0.16, 0.25) are close to the white region due to an energy transfer process and the energy transfer mechanism from Ce3+ to Mn2+ in the RbCaGd(PO4)2 host was dominated by dipole-dipole interactions.  相似文献   

16.
Hydroxyapatite and Bioglass®-45S5 were sintered together creating new ceramic compositions that yielded increased apatite deposition and osteoblast differentiation and proliferation in vitro compared to hydroxyapatite. The sintered products characterized by X-ray diffraction, revealed hydroxyapatite as the main phase when small quantities (1, 2.5 and 5 wt.%) of bioglass was added. Bioglass behaved as a sintering aid with β-TCP (Ca3(PO4)2) being the minor phase. The amount of β-TCP increased with the amount of bioglass added. In compositions with larger additions of bioglass (10 and 25 wt.%), new phases with compositions of calcium phosphate silicate (Ca5(PO4)2SiO4) and sodium calcium phosphate (Na3Ca6(PO4)5) were formed respectively within amorphous silicate matrices. In vitro cell culture studies of the ceramic compositions were examined using bone marrow stromal cell (BMSC). Cell proliferation and differentiation of bone marrow stromal cells into osteoblasts were determined by Pico Green DNA assays and alkaline phosphatase (ALP) activity, respectively. All hydroxyapatite–bioglass co-sintered ceramics exhibited larger cell proliferation compared to pure hydroxyapatite samples. After 6 days in cell culture, the ceramic with Ca5(PO4)3SiO4 in a silicate matrix formed by reacting hydroxyapatite with 10 wt.% bioglass exhibited the maximum proliferation of the BMSC's. The ALP activity was found to be largest in the ceramic with Na3Ca6(PO4)5 embedded in a silicate matrix synthesized by reacting hydroxyapatite with 25 wt.% bioglass.  相似文献   

17.
The time-resolved PSL studies of CsBr1−xClx:Eu2+ system has been studied for different europium concentrations. An efficient PSL material for use in image plate should have very short PSL emission lifetime. PSL emission lifetime for stimulation at 650 and 630 nm (F(Br)- and F(Cl)-centers) for CsBrCl:Eu2+ is determined to be 0.69 μs. The lifetime of BaFBr:Eu2+, the commercially available image screen phosphor is 0.8 μs. The present observation support the use of CsBrCl:Eu2+ as an efficient X-ray image screen phosphor.  相似文献   

18.
《Optical Materials》2009,31(12):1848-1853
The VUV excited luminescent properties of Ce3+, Tb3+, Eu3+ and Tm3+ in the matrices of KMGd(PO4)2 (M = Ca, Sr) were investigated. The bands at about 165 nm and 155 nm in the VUV excitation spectra are attributed to host lattice absorptions of the two matrices. For Ce3+-doped samples, the Ce3+ 5d levels can be identified. As for Tb3+-doped samples, typical 4f–5d absorption bands in the region of 175–250 nm were observed. For Eu3+ and Tm3+-doped samples, the O2−–Eu3+ and O2–Tm3+ CTBs are observed to be at about 229 nm and 177 nm, respectively. From the standpoints of color purity and luminescent efficiency, KCaGd(PO4)2:Tb3+ is an attractive candidate of green light PDP phosphor.  相似文献   

19.
《Materials Letters》2005,59(24-25):3069-3072
The nanocrystalline ribbons Fe90.3−xZr7B2.7Cux with low Cu contents can be directly obtained through melt-spinning technique with an appropriate low quenching speed such as 22 m/s. Sizes of bcc-Fe grains precipitated in Fe90.3−xZr7B2.7Cux as-spun ribbons were 17 nm for x = 0.75, 15 nm for x = 1 and 12 nm for x = 1.25. The addition of Cu reduces grain size of bcc-Fe in as-spun nanocrystalline Fe90.3−xZr7B2.7Cux ribbons. Among the investigated samples (0.5  x  1.5), the largest magnetoimpedance can be obtained in the nanocrystalline Fe80.3Zr7B2.7Cu1 as-spun ribbon with x = 1. The value of magnetoimpedance (Z(H)  Z(0)) / Z(0) under H = 90 Oe for Fe80.3Zr7B2.7Cu1 as-spun ribbon reaches − 28.2% at a frequency of 1 MHz.  相似文献   

20.
In this research, we have presented the synthesis and characterization of the various Ca1−xEuxAl0.76Si1.18N3 (x = 0.01  0.1) red-emitting phosphors, which were successfully prepared by carbothermal reduction and nitridation (CTRN) method without the strict needs of high pressure. Here, raw materials were CaCO3, AlN, Si3N4, Eu2O3, and C. In particular, C was considered as efficient and robust reducing agent. The influences of reaction temperature, holding time, C content, and Eu2+ concentration were investigated in the crystal phase compositions and photoluminescence properties of the as-prepared phosphors. Importantly, CaAlSiN3:Eu2+-based red phosphors with interesting properties were obtained with reaction temperature at 1600 °C for 4 h by atmospheric N2–10%H2 pressure, and the C/O ratio of 1.5:1, respectively. The emission peak positions of as-prepared phosphors were red-shifted from 607 nm to 654 nm with Eu2+ concentration from 1 mol% to 10 mol%. Meanwhile the highest luminescence intensity was achieved with 2 mol% of Eu2+ concentration, which showed high external quantum efficiency up to 71%. Combining the phosphor blend of green-emitting β-sialon:Eu2+, yellow-emitting Ca-α-sialon:Eu2+, and red-emitting Ca0.98Eu0.02Al0.76Si1.18N3 with a blue LED (light emitting diodes), warm white LED can be generated, yielding the color rendering index (Ra) of 93 at correlated color temperature (CCT) of 3295 K. These results indicate that CaAlSiN3:Eu2+-based red-emitting phosphors prepared by facile CTRN are highly promising candidates for warm white LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号