首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
通过对锦屏一级水电站运行期历年蓄水、水位下降、高水位运行过程中大坝径向位移变形进行比较分析,掌握大坝变形分布特征及变化发展规律。通过分析历年垂线数据认为,大坝径向位移与库水位变化具有良好的相关性,大坝径向位移变形除与库水位相关外,还与水位变化时间、水位变化速率、变形滞后性等因素相关,根据这些相关因子可建立后期大坝运行期间变形预测模型。  相似文献   

2.
铜场水库大坝为黏土心墙堆石坝,2010年7月15日填筑至设计高程,该工程2011年12月10日下闸蓄水。文章通过对初期蓄水监测资料的分析,初步揭示了铜场水库大坝在上游水位的作用下,坝体渗透水位上升的原因。监测成果表明:1初期蓄水对大坝沉降影响不大;2 0+090 m与0+145 m断面的倾度为0.01%~0.07%之间,说明心墙沉降比较均匀;3坝体渗流监测点的渗透水位随上游库水位的变化而变化。  相似文献   

3.
文中着重介绍了鱼背山面板堆石坝在施工期和蓄水期的变形观测结果。变表监测资料分析表明:坝体内不同部位垂直沉降和水平位移,主要受施工期大坝主体工程填筑和水库蓄水的影响,坝基孔隙不压力变化与库水位变化成正比。在大坝运行初期,及时地分析和判断出面板的两处裂缝,在水库放空检查时,裂缝所在的部位和开裂宽度与监测结果非常吻合。为及时制定补救措施提供了科学依据。  相似文献   

4.
文中着重介绍了鱼背山面板堆石坝在施工期和蓄水期的变形观测结果。变形监测资料分析表明 :坝体内不同部位垂直沉降和水平位移 ,主要受施工期大坝主体工程填筑和水库蓄水的影响 ,坝基孔隙水压力变化与库水位变化成正比。在大坝运行初期 ,及时地分析和判断出面板的两处裂缝 ,在水库放空检查时 ,裂缝所在的部位和开裂宽度与监测结果非常吻合。为及时制定补救措施提供了科学依据。  相似文献   

5.
以大坝监测数据为基础,对菲古水库坝顶溢流面板坝蓄水后运行期大坝变形和溢洪道泄槽错动分布规律进行分析和评价。运用数理统计、时空分布分析等手段,对库水位、气温和水温等环境变量进行了相关性分析。认为大坝坝顶水平变形和沉降量均小于安全警戒值;气温和库水位是影响大坝变形的主要环境因素;溢洪道泄槽错动量对温度十分敏感,但相邻泄槽变形协调,错动量较小,泄槽处于较安全状态;通过采用主堆石料混杂少量埋石砼的做法,减少坝顶溢洪道的不均匀沉降是可行的。  相似文献   

6.
阐述小浪底水利枢纽大坝的结构特点及变形特性,对大坝变形进行监测,监测结果表明,各监测点变化连续、平顺、无突变,且逐渐趋于稳定,但相同高程的下游测点位移量大于上游测点位移量。分析大坝变形成因,认为时效是引起大坝变形的主要因素;而引起大坝不均匀变形的主要因素包括水库初次蓄水、水位骤降、坝体分区材料差异、河床深覆盖层、施工速率快和库水作用力等。通过与设计值对比、工程类比以及对正常蓄水位变形量的预测分析认为,坝体变形不影响大坝安全稳定运行。  相似文献   

7.
大朝山水电站初次蓄水期大坝变形性态分析   总被引:1,自引:1,他引:0  
云南大朝山水电站初次蓄水期,库水位上升速度较快,水压力对大坝结构影响十分显著,大坝性态与正常运行期存在明显差异。由于自动化观测系统及时投入使用,较完整地反映了坝体及基岩的变形过程,证明了它们在水压力作用下呈现出良好的弹性工作状态。文中介绍了大朝山水电站初次蓄水期大坝变形观测设置、变形分析以及库水压力的实测成果,为从事水工设计及大坝安全监测人员提供了第一手资料。  相似文献   

8.
通过研究黄河小浪底水库变形监测特征点累计位移量与库水位升降的关系,表明:库水位周期性的急剧升降导致土石坝顺水流方向水平位移的周期性变化,土石坝具有"弹性";大坝在高水位压力下,受时效影响向下游方向运动,属非弹性变化;沉降是土石坝土体固结的结果,在库水位急剧升降时,受水位分量作用土体固结速率改变,沉降速率加快。  相似文献   

9.
溪洛渡特高拱坝蓄水初期工作状态评价   总被引:8,自引:1,他引:7  
本文对溪洛渡拱坝蓄水阶段原型监测成果进行归纳总结,论术了监测数据的同步性、连续性、规律性和收敛性特征,初步评价了大坝的运行状态,基于数值仿真反馈分析,研究了大坝受力变形特性的机理,重点阐述了拱坝库盆沉降、上部谷幅收缩效应,分析了坝踵压应力的合理性。结果表明:溪洛渡拱坝初期蓄水期拱坝变形与水库水位变化过程一致,连续变化且符合客观规律,整体时效变形呈现收敛态势;由于溪洛渡特殊的地质条件,库盆压力对大坝变形影响较大,但不影响整体安全稳定;拱坝应力分布良好,坝肩推力在坝基内扩散明显,处于可控状态。综合分析认为,溪洛渡拱坝蓄水过程安全可靠。  相似文献   

10.
天荒坪抽水蓄能电站下库大坝为钢筋混凝土面板堆石坝,施工期、蓄水初期累计内部沉降量及蓄水竣工后外部变形观测累计沉降量均偏大,且收敛缓慢,目前变形仍在继续。通过对外部沉降观测资料进行处理分析,对其沉降较类似工程偏大的原因从填筑材料、填筑施工和河谷地形等方面进行了分析,对今后的面板堆石坝施工有一定参考借鉴意义。  相似文献   

11.
吉林台一级水电站混凝土面板堆石坝的坝体和面板在施工期及蓄水期的变形监测数据显示:坝体最大沉降量为77.1 cm,最大沉降率为0.948%。经分析得知,沉降主要大受坝填筑材料和水库蓄水的影响,且混凝土面板的垂直接缝、周边缝、钢筋应力、挠曲变形随水位抬升呈规律性变化,并与坝体内部变形监测数据相吻合。该监测数据为分析整体大坝变形形态提供了依据。  相似文献   

12.
通过研究小浪底水库在调水调沙期间的运用方式,揭示了其库水位与土石坝变形的一般规律:土石坝顺水流方向水平位移变化与时效和库水位变化关系密切,土体固结是沉降的主导因素。调水调沙期间,大坝顺水流方向水平位移的时效作用改变,水位快速下降时,坝顶及上游坝坡、下游坝坡各监测点明显向上游移动;水位快速上升时,各监测点明显向下游移动;库水位变化时,坝体垂直位移的时效作用改变,沉降速率加快。  相似文献   

13.
在碗窑水库大坝蓄水后的有效观测时段内,对大坝水平位移、坝体挠度监测资料进行了定性的分析。分析结果表明,大坝坝体水平位移与库水位、温度的相关性较好,变化规律基本符合碾压混凝土重力坝变形的一般规律。  相似文献   

14.
高土石坝初蓄期控制库水位抬升速率是确保坝体心墙变形稳定的重要措施,通过对大坝心墙不同部位变形和渗流的监测数据分析,认为库水位过快的抬升速率将导致坝体心墙变形过大,过大的心墙变形会降低土体内的有效应力,在库水位作用下易产生水力劈裂,造成坝体心墙局部渗漏。  相似文献   

15.
研究了以土石坝蓄水期变形监测资料为基础,考虑库水位、水位上升速率、填筑高度和时效等影响因素建立初期蓄水期和正常蓄水运行期大坝变形统计模型。所建模型以逐步回归分析法为基础,包含了固结分量、水压分量、填筑高度分量及水位升降速率分量,并考虑了填筑高度与时间的耦合影响。运用所建立的模型,对上述测量值在初期蓄水期和正常运行期的变化规律进行了预测分析,经与原型监测值比较,验证了所建立模型的有效性。  相似文献   

16.
以原型监测为基础,将实测值分析与理论推导相结合,对乐滩水电站运行期大坝变形的时空分布规律进行分析和评价。位移分析表明:坝基变形量及测值变幅普遍小于坝顶,由于分析时段内库水位变化较小,温度是影响坝体变形的控制因素;坝顶沉降量冬季大、夏季小,沿横河向呈不规则敞口"U"形分布,河谷坝段沉降普遍大于岸坡坝段;坝顶水平位移夏季向上游变化,冬季向下游变化,沿横河向呈不规则敞口"W"形分布,这与不同坝段的结构有关。挠度分析表明:坝体水平变形量随观测高程的降低呈递减规律,坝顶衰减速率快,至坝基变形趋于稳定。综合分析认为,坝体变形的时间演化规律和空间分布规律正常,大坝目前处于安全状态。  相似文献   

17.
对三峡工程初期蓄水大坝变形监测成果的分析表明:大坝基础水平位移很小,处于稳定状态;坝基垂直位移总体呈沉降趋势,最大沉降量21.58mm,相邻坝段坝体沉降量绝大多数小于1mm,无不均匀沉降;左厂1~5号坝段等部位基础水平位移很小,坝基沉降量相对较小,无不均匀沉降;升船机上闸首坝段由于建基面高程较高,受蓄水影响不大,水平和垂直位移变化不大。总之,大坝变形量值均在设计范围内,规律合理,大坝工作性态正常,大坝是安全的。  相似文献   

18.
江坪河水电站面板堆石坝填筑过程出现数次停工情况,坝体沉降特性与一般连续填筑的大坝有所差异,相当于老坝加高。蓄水前大坝最大沉降量小于类似工程,且沉降过程中存在的局部不均匀现象已经消除。蓄水前的坝体沉降以及面板监测成果显示,大坝填筑期间的停工过程对坝体变形控制是有利的。  相似文献   

19.
以某碾压混凝土坝7号坝段异常变形作为分析实例,根据坝体实测温度场,采用有限元法计算坝体温度变化对大坝水平位移的影响,采用混合模型法反演坝体弹性模量。分析结果表明,水位变化对7号坝段水平位移影响幅度在合理范围内,由于坝体温度场受气温影响小,温度分量占比较小,导致库水位分量占比相对较大,因此水平位移表现为与库水位相关性明显;考虑坝体温降及测值突变影响,坝体不存在明显趋势性位移;坝基趋势性位移主要发生在蓄水过程中,正常运行以来坝基向下游变形仅1 mm左右,不影响大坝安全运行。该结论为大坝安全性评价提供了可靠依据。  相似文献   

20.
观音岩水电站混合坝在竣工后发生了较大的流变变形,导致土石坝坝段在蓄水一个月后出现了裂缝。为分析坝体裂缝产生的原因,采用并行变异粒子群算法,根据观音岩混合坝竣工后的坝体沉降观测数据反演了筑坝堆石料和心墙料的流变参数。进一步根据反演参数进行了坝体的三维有限元计算,分析和预测了大坝在蓄水期和运行期的变形特性。结果表明,较大的蓄水期不均匀沉降及较大的坝体流变变形是坝体产生裂缝的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号